Use of the spectrophotometric method for cell quantification of marine microalgae for use in aquaculture
Published 2023-12-12
Keywords
- Absorbance,
- Optical density,
- Spectrophotometry,
- Microalgae
How to Cite
Copyright (c) 2023 RUTH MILAGROS ALEJOS CABRERA, Gheraldine Abegail Ynga Huamán, Wilmer Alexis Gaspar Reyes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In the present study, we proposed to develop a predictive model that allows quantifying the cell density of microalgae from absorbance. The specific wavelength for the maximum absorbance of two species of marine microalgae of importance in aquaculture was determined: Isochrysis galbana (680 nm) and Chaetoceros calcitrans (676 nm). Subsequently, the predictive model was generated through the construction of a calibration curve, five levels were used for each species and it was carried out quintuplicate. The concentration range for C. calcitrans was 0,8–4,3 x 106 cells/ml (0,8; 1,7; 2,5; 3,4 and 4,3 x 106 cells/ml) and for I. galbana it was 1,6–7,8 x 106 cells/ml (1,6; 3,2; 4,7; 6,3 and 7,8 x 106 cell/ml). As a result, the following equations were obtained: y = 0,0004 + 0,0581*(AbsI. galbana) and y = 0,0065 + 0,1001*(AbsC. calcitrans); where the coefficients of determination (R2) were high 0,991 and 0,981 for I. galbana and C. calcitrans, respectively; hence, indicates that absorbance and cell density are closely related to each other. Therefore, the linear model equation allows determination of cell density as a function of absorbance.
Downloads
References
- Prieto M, De la Cruz L, Morales M. Cultivo experimental del Cladócero Moina sp. alimentado con Ankistrodesmus sp. y Saccharomyces cereviseae. Rev. MVZ Córdoba. 2006;11(1):705-714. doi.org/10.21897/rmvz.455
- Ferreira M, Maseda A, Fábregas J, Otero A. Enriching rotifers with “Premium” microalgae. Isochrysis aff. galbana clone T-ISO. Aquaculture. 2008;279:126-130. doi.org/10.1016/j.aquaculture.2008.03.044
- Welladsen H, Kent M, Mangott A, Li Y. Shelf-life assessment of microalgae concentrates: Effect of cold preservation on microalgal nutrition profiles. Aquaculture. 2014;430:241-247. doi.org/10.1016/j.aquaculture.2014.04.016
- Samat NA, Yusoff FM, Rasdi NW, Karim M. Enhancement of Live Food Nutritional Status with Essential Nutrients for Improving Aquatic Animal Health: A Review. Animals. 2020;10(12):2457. doi.org/10.3390/ani10122457
- Brown MR, Jeffrey SW, Volkman JK, Dunstan JK. Nutritional properties of microalgae for mariculture. Aquaculture. 1997;151(1-4):315–331. doi.org/10.1016/S0044-8486(96)01501-3
- McLean E. Fish tank color: An overview. Aquaculture. 2021;530:735750. doi.org/10.1016/j.aquaculture.2020.735750
- Lehmuskero A, Skogen Chauton M, Boström T. Light and photosynthetic microalgae: A review of cellular- and molecular-scale optical processes. Prog. Oceanogr. 2018;168:43-56. doi.org/10.1016/j.pocean.2018.09.002
- Wungmool P, Rangsi N, Hormwantha T, Sutthiopad M, Luengviriya C. Measurement of the cell density of microalgae by an optical method. J Phys Conf Ser. 2019;1298(1):012005. doi.org/10.1088/1742-6596/1298/1/012005
- Arredondo-Vega BO, Voltolina D. Concentración, recuento celular y tasa de crecimiento. En: Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Arredondo-Vega BO, Voltolina D, Editores. México: Centro de Investigaciones Biológicas del Noroeste, S.C.; 2007. p. 21.
- Li S, Xu J, Chen J, Chen J, Zhou C, Yan X. The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture. 2014;428–429:104–110. doi.org/10.1016/j.aquaculture.2014.02.032
- Wang H, Zhu R, Zhang J, Ni L, Shen H, Xie P. A Novel and Convenient Method for Early Warning of Algal Cell Density by Chlorophyll Fluorescence Parameters and Its Application in a Highland Lake. Front. Plant Sci. 2018;9:869. doi.org/10.3389/fpls.2018.00869
- Lee TH, Chang JS, Wang HY. Current Developments in High-Throughput Analysis for Microalgae Cellular Contents. Biotechnol. J. 2013;8:1301–1314. doi.org/10.1002/biot.201200391
- Nielsen L, Smyth G, Greenfield P. Hemacytometer Cell Count Distributions: Implications of Non-Poisson Behavior. J. Biotech. Prog. 1991;7(6):560–563. doi.org/10.1021/bp00012a600
- Ribeiro-Rodrigues LH, Arenzon A, RayaRodriguez MT, Fontoura NF. Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J. Environ. Chem. Ecotoxicol. 2011;3(8):225–228. doi.org/10.5897/JECE2011.025
- Louis KS, Siegel AC, Levy GA. Comparison of manual versus automated trypan blue dye exclusion method for cell counting. En: Mammalian Cell Viability: Methods and Protocols. Series Methods in Molecular Biology. Stoddart MJ, Editor. Estados Unidos: Springer Protocols; 2011. p. 7–12.
- Alam MA, Muhammad G, Rehman A, Russel M, Shah M, Wang Z. Standard Techniques and Methods for Isolating, Selecting and Monitoring the Growth of Microalgal Strain. En: Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Alam M, Wang Z, Editores. Singapur: Springer; 2019, p. 85-86. doi.org/10.1007/978-981-13-2264-8_4
- Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. En: Culture of Marine Invertebrate Animals. Smith WL, Chanley MH, Editores. Plenum Press, N.Y.; 1975. p. 48.
- Godoy-Hernández G, Vázquez-Flota FA. Growth measurements. Estimation of cell division and cell expansion. En: Plant Cell Culture Protocols, Methods in Molecular Biology. Loyola-Vargas VM, Ochoa-Alejo N. Editores. Estados Unidos: Springer; 2012. p. 41–48. doi.org/10.1007/978-1-61779-818-4_4
- Abalde J, Cid A, Fidalgo Paredes P, Torres E, Herrero C. Microalgas: cultivo y aplicaciones. España: Universidade da Coruña, Servizo de Publicacións; 1995. doi.org/10.17979/spudc.9788497497695
- Santos-Ballardo D, Rossi S, Hernández V, Vázquez Gómez R, Rendón-Unceta M, CaroCorrales J, et al. A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture. 2015;448:87-92. doi.org/10.1016/j.aquaculture.2015.05.044
- Alfaro D, Gómez A, Rovira M. Evaluación de la correlación existente entre densidad celular y densidad óptica de microalgas marinas. Artículos Científicos del V Congreso de Ingeniería y Arquitectura; 2015; Universidad Centroamericana “José Simeón Cañas” – UCA, La Libertad, El Salvador. La Libertad: Talleres Gráficos UCA ISSN X; 2016. p. 95-102.
- Nevarez L, Carrillo E, López E, Vargas J, Noriega J. Cinética de crecimiento de la microalga Chaetoceros muelleri en un fotobiorreactor. Biotecnia. 2017;19:14-18. doi.org/10.18633/biotecnia.v19i0.360
- Awah Che C, Hee Kim S, Jun Hong H, Katongole Kityo M, Yung Sunwoo I, Jeong GT, et al. Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system. Bioresour. Technol. 2019;285:121323. doi.org/10.1016/j.biortech.2019.121323
- Pavia-Gómez M, García-Romeral J, Chirivella-Martorell J, Serrano-Aroca A. Direct spectrophotometric method to determine cell density of Isochrysis galbana in serial batch cultures from a larger scale fed-batch culture in exponential phase. Nereis. 2016;8:35-43.
- Ritchie R, Sma-Air S, Runcie J. Light absorptance of algal films for photosynthetic rate determinations. J. Appl. Phycol. 2022;34:2463–2475. doi.org/10.1007/s10811-022-02782-3
- Bricaud A, Morel A, Babin M, Allali K, Claustre H. Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (Case 1) Eaters: analysis and Implications for Bio-Optical Models. J. Geophys. Res. 1998;103(C13):31033–31044. doi.org/10.1029/98JC02712
- Griffiths MJ, Garcin C, Hille RPV, Harrison STL. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods. 2011;85(2):119–23. doi.org/10.1016/j.mimet.2011.02.005