DESINFECCIÓN DE AGUA CON PROCESOS FOTOCATALÍTICOS: ESTADO DEL ARTE Y PERSPECTIVAS
Keywords
- Disinfection, Photocatalysis, TiO2, E. Coli Collector Compound Parabolic
How to Cite
Abstract
The deterioration of the quality of surface water sources and the lack of disinfection have a high impact on infant mortality in developing countries. The implementation of photocatalysis for the purpose of disinfection dates from the last decades of the twentieth century, is mostly used the titanium dioxide (TiO2) as anatase, which is a semiconductor that excite with ultraviolet light produces chemical species highly reactive that may inactivate microorganisms to degrade organic matter and even his mineralization. Part of the basic research has been devoted to elucidating the microbicides mechanisms of this technology that are related to structural changes, disruption of metabolic processes and damage to genetic material. In vitro studies employing E. Coli as a model to a lesser extent of other microorganisms, work on simple matrix has identified major interference in reducing bacterial as the role of certain ions and organic matter present. The photo-catalytic reactor design requires to add an optical component for the use of radiation and the use of a suspended catalyst or immobilized in addition to the parameters used in the design of conventional chemical reactors. The reactor called compound parabolic collectors have shown the best performance. The experiences in pilot plants are very recent but promising and seek to optimize operating conditions, using new catalysts or their blends, improving the use of radiation and reducing costs in order to maximize efficiencies and to assess the sustainability of this technology.