Vol. 29 No. 1 (2016): Revista ION
Articles

Mathematical Models Applied to Biogas contaminants Breakthrough Curves

Oscar Vasco Echeverri
Universidad Pontifcia Bolivariana, Facultad de Ingeniería Química, Centro de Estudios y de Investigación en Biotecnología (CIBIOT)
Margarita Ramírez Carmona
Universidad Pontifcia Bolivariana, Facultad de Ingeniería Química, Centro de Estudios y de Investigación en Biotecnología (CIBIOT)
Julián Gómez Mojica
Universidad Pontifcia Bolivariana, Facultad de Ingeniería Química, Centro de Estudios y de Investigación en Biotecnología (CIBIOT)

Published 2016-07-15

Keywords

  • Mathematical Models,
  • Breakthrough Curves,
  • Biogas Purification,
  • Hydrogen Sulfide,
  • Ammonia,
  • Adsorption.
  • ...More
    Less

How to Cite

Vasco Echeverri, O., Ramírez Carmona, M., & Gómez Mojica, J. (2016). Mathematical Models Applied to Biogas contaminants Breakthrough Curves. Revista ION, 29(1). https://doi.org/10.18273/revion.v29n1-2016007

Abstract

In this project biogas was purifed using separate packed bed adsorption columns using activated carbon, iron flings, kaolin and calcium carbonate. Experiments were performed in 2cm diameter and 9cm length polypropylene columns. The breakthrough curves were constructed with an average biogas fow of 2.2L per day. Samples were taken for almost 28 days, which biogas composition were quantifed using gas chromatography and online gas analyser. The curves were ftted to three mathematical models. Using activated carbon a correlation coeffcient of 0.9987 and 0.9991 for hydrogen sulfde (H2S) and ammonia (NH3), respectively, were obtained. In the case of iron flings a correlation coeffcient of 0.9945 and 0.9975 for H2S and NH3, respectively, were obtained. Using kaolin a correlation coeffcient of 0.9994 and 0.9885 for H2S and NH3, respectively, were obtained. Finally, using calcium carbonate with a correlation coeffcient of 0.9988 and 0.9985 for H2S and NH3, respectively, were obtained. Removal percentage of H2S and NH3 using activated carbon was 72.6 %, iron flings was 74.1 %, kaolin was 32.7% and calcium carbonate was 65.4 %.

Downloads

Download data is not yet available.

References

[1] Rivera González D, Plata Martínez L, Castro Molano L, Guzmán Luna C, Escalante Hernández H. Aprovechamiento del subproducto sólido de la digestión anaerobia del bagazo de fique (furcraea macrophylla) para el acondicionamiento de suelos. rev.ion. 2012;25(1):25–34.

[2] Organización de las Naciones Unidas, Manual de Biogás. Chile; 2011.

[3] Arenas LP, Escalante Hernández H, Combariza MY. Comparative study for methanogenic stage of anaerobic digestion to organic fraction of fruit and vegetable municipal wastes treatment. rev.ion. 2012;25(1):89–96.

[4] Agencia Andaluza de la Energía. Estudio básico del biogás. Sevilla: 2011.

[5] Sanguino Barajas PA, Téllez Anaya NA, Escalante Hernández H, Vasquez Cardozo CA. Aprovechamiento energético de la biomasa residual del sector avícola. revi.ion. 2009;22(1):43–52.

[6] Horikawa MS, Rossi F, Gimenes ML, Costa CMM, Silva MGC. Chemical absorption of H2S for biogas purification. Brazilian J. Chem. Eng. 2004;21(3):415–22.

[7] Gonçalves M, Sánchez-García L, De Oliveira Jardim E, Silvestre-Albero J, Rodríguez-Reinoso F. Ammonia removal using activated carbons: effect of the surface chemistry in dry and moist conditions. Environ. Sci. Technol. 2011;45:10605–10.

[8] Huertas JI, Giraldo N, Izquierdo S. Removal of H2S and CO2 from Biogas by Amine Absorption. In: Mass Transfer in Chemical Engineering Processes. Markoš J, Editor. Croacia:InTech; 2011. p. 134-50.

[9] Tippayawong N, Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy. 2010;35(12):4531–5.

[10] Betzabet Moreno EC, Gropelly E. Revision de las principale tecnologías de prificación de biogás. Cienc. y Tecnol. 2010;10:187-201.

[11] Gupta P, Gupta A. Biogas production from coal via anaerobic fermentation. Fuel. 2014;118:238-42.

[12] Acosta M, Revelo D, Ruiz O, Tax O, Botero R. Capacidad de filtración y retención del sulfuro de hidrógeno (H2S) del biogás, en dos diferentes sustratos orgánicos ( em-compost y lombricompost). Tierra Trop. 2009;5(1):109–13.

[13] Ramirez M, Pereira da Silva M, Ferreira SG, Vasco O. Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves. J. Hazard. Mater. 2007;146(1–2):86–90.

[14] Burkert CA, Barbosa GN, Mazutti MA, Maugeri M.Mathematical modeling and experimental breakthrough curves of cephalosporin C adsorption in a fixed-bed column. Process Biochem. 2011;46(6):1270–7.

[15] Valencia Ríos J, Castellar Ortega G. Predicción de las curvas de ruptura para la remoción de plomo (II) en dis olución acuosa sobre carbón activado en una columna empacada. Fac. Ing. Univ. Antioquia;1:141–58.

[16] Elizondo Quintero AG, Herrera Colindres EN. Evaluación de medios filtrantes para la reducción del sulfuro de hidrógeno en el mejoramiento de la calidad del biogás (Tesis de grado).Tegucigalpa; Honduras: Universidad en Tegucigalpa Zamorano; 2012.

[17] Ramırez Carmona ME, Pereira da Silva MA, Ferreira Leite SG, Vasco Echeverri OH, Ocampo-Lopez C. Packed bed redistribution system for Cr(III) and Cr(VI) biosorption by Saccharomyces cerevisia. J. Taiwan Inst. Chem. Eng. 2012;43(3):428–32.

[18] Molinuevo-Salces B, García-González MC, González-Fernández C, Cuetos MJ, Morán A, Gómez X. Anaerobic co-digestion of livestock wastes with vegetable processing wastes: a statistical analysis. Bioresour. Technol. 2010;101(24):9479–85.

[19] Chu KH. Improved fixed bed models for metal biosorption. Chem. Eng. J. 2004;97(2-3):233-9.

[20] Tejada Tovar C, Villabona Ortiz A, Ruiz Paternina E. Cinética de adsorción de Cr(VI) usando biomasas residuales modificadas químicamente en sistemas por lotes y continuo. rev.ion. 2015;28(1):29–41.

[21] Ruiz MB, Gómez P, Giralda R, Carreras Arroyo N, Rodríguez Restrepo M, Ramos Suárez JL. Biogas purification and use as vehicle fuel in rural areas. In: 20th European Biomass Conference and Exhibition. Setting the course for a biobased economy; 2012 Jun 18-22; Milan, Italy; 2012.

[22] Lin W-C, Chen Y-P, Tseng CP. Pilot-scale chemical-biological system for efficient H2S removal from biogas. Bioresour. Technol. 2013;135:283–91.

[23] Xiao Y, Wang S, Wu D, Yuan D. Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions. J. Hazard. Mater. 2008;153(3):1193–200.

[24] Ho N. Modeling Hydrogen Sulfide Adsorption by Activated Carbon made from Anaerobic Digestion By-Product (Master’s Theses). Toronto, Canada: University of Toronto; 2012.

[25] Lozano Urbina LA, Muvdi Nova CJ, Mejía Uribe LD. Estabilización del gel de Alor barbadensis Miller y disminución de su concentración poe adsorción en columna con carbón activado. rev.ion. 2011;24(1):61–7.

[26] Chand Bansal R, Goyal M. Activated Carbon Adsorption. Boca Raton, Estados Unidos: CRC Press, 2005.

[27] Esteves I, Lopes M, Nunes P, Mota J. Adsorption of natural gas and biogas components on activated carbon. Sep. Purif. Technol. 2008;62(2):281–96.

[28] Ho K-L, Lin W-C, Chung Y-C, Chen Y-P, Tseng C-P. Elimination of high concentration hydrogen sulfide and biogas purification by chemical-biological process. Chemosphere. 2013;92(10);1396–401.

[29] Himeno S, Komatsu T, Fujita S. Development of a New Effective Biogas Adsorption Storage Technology. Adsorption. 2005;11(S1):899–904.

[30] Hernández SP, Chiappero M, Russo N, Fino D. A novel ZnO-based adsorbent for biogas purification in H2 production systems. Chem. Eng. J. 2011;176–177:272–9.

[31] Monser L, Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 2002;26(2-3):137–46.

[32] Cebula J. Biogas purification by sorption techniques. Archit. Civ. Eng. Environ. 2009;2:95–104.

[33] Zhao Q, Leonhardt E, Macconnell C, Frear C, Chen S. Purification Technologies for Biogas Generated by Anaerobic Digestion. In Compressed Biomethane, CSANR, Ed. 2010.

[34] Mockovčiaková A, Iveta Š, Jiří Š, Ivana K. Characterization of changes of low and high defect kaolinite after bioleaching. Appl. Clay Sci. 2008;39(3–4):202–7.

[35] Li T, Shu Z, Zhou Z, Chen Y, Yu D, Yuan X, Wang Y. Template-free synthesis of kaolin-based mesoporous silica with improved specific surface area by a novel approach. Appl. Clay Sci. 2015;107:182–7.

[36] Ozekmekci M, Salkic G, Fellah MF. Use of zeolites for the removal of H2S: A mini-review. Fuel Process. Technol. 2015;139:49–60.

[37] Hosseini MR, Ahmadi A. Biological beneficiation of kaolin: A review on iron removal. Appl. Clay Sci. 2015;107:238–45.

[38] Prieto-García J, Quintana-Puchol R, Rodríguez-Díaz J, Arteaga-Pérez L, Mollineda-Trujillo A. Estudio termodinámico de la adsorción de amoniaco en ceniza de bagazo de caña de azúcar. Rev. Cuba. Química. 2012;24(2):181–4.

[39] Salazar Cuaila JL, Huertas Cardoso J. Evaluación de la eliminación de CO2 y H2S por endulzamiento de biogás usando soluciones acuosas de alcanolaminas. Perú: Universidad Nacional Jorge Basadre Grohmann; 2012.

[40] Castillo Villabona D, Valderrama Solano A. Estudio de Pre-factibilidad Técnica y Economía de la utilización de Biogás en Plantas Diesel para Generación Eléctrica. Colombia: Universidad Industrial de Santander, 2004.

[41] Molina-Sabio M, González JC, Rodríguez-Reinoso F. Adsorption of NH3 and H2S on activated carbon and activated carbon-sepiolite pellets. Carbon N. Y. 2004;42(2):448–50.

[42] Huynh Q, Thieu VQQ, Dinh TP, Akiyoshi S. Removal of hydrogen sulfide (H2S) from biogas by adsorption method. In: 8th Biomas Asia Workshop; 2011 nov 29 - dec 1; Hanoi, Vietnam; 2011.

[43] del Valle Morero B. Purificación de biogás con tecnologías de produción limpias (Tesis de doctorado). Santa Fe, Argentina: Universidad Nacional del Litoral; 2014.

[44] Cherosky P, Li Y. Hydrogen sulfide removal from biogas by bio-based iron sponge. Biosyst. Eng. 2013;114(1):55–59.

[45] Montalvo Martinez SJ, Feernández Santana E. Métodos Económicos y Ecologicamente Viables para Purificar Gases Contaminantes. La Habana, Cuba: Instituto Superior Politécnico José Antonio Echeverría (ISPJAE).

[46] Marín Marín ML. Purificación biológica de biogás. Chile: Universidad de Chile; 2011.

[47] Rakmak N, Wiyaratn W, Chungsiriporn J. Removal of H2S from Biogas by Iron (Fe3+) Doped MgO on Ceramic Honeycomb Catalyst using Double Packed Columns System. Eng. J. 2010;14(1):15–24.