Vol. 30 No. 1 (2017): Revista ION
Article of scientific and technological research

Prediction and analysis of emissions from diesel/biodiesel fuel blends modified with alumina nanoparticles and oleic acid

Andrés Peñaloza
Universidad de Cartagena
Andy Rincón
Universidad de Cartagena
Adriana Herrera
Universidad de Cartagena
Karina Ojeda
Universidad de Cartagena

Published 2017-06-30

Keywords

  • greenhouse gas,
  • Diesel,
  • biofuel,
  • nanoadditives

How to Cite

Peñaloza, A., Rincón, A., Herrera, A., & Ojeda, K. (2017). Prediction and analysis of emissions from diesel/biodiesel fuel blends modified with alumina nanoparticles and oleic acid. Revista ION, 30(1). https://doi.org/10.18273/revion.v30n1-2017004

Abstract

Diesel-RK software was used to evaluate the effect of alumina nanoparticles and oleic acid as additives for reducing greenhouse gas emissions in diesel/biodiesel fuel blends. Thus, it was estimated the physicochemical properties of the fuel blends using correlations for colloidal dispersions and mixing rules. This was achieved by fixing the concentrations of the additives at 10 and 20ppm. The results showed reductions of 11 % and 25 % for SO2 emissions and particulate material, respectively; while CO2 emissions showed no significant improvements, as well as no significant enhancement was estimated for specific fuel consumption, which remained below 1.0 %. Regarding NO2 emissions, an increase from 2.1 g/kWh to 3.1 g/kWh was observed for the addition of several concentration of nanoadditives; thus, it was evidenced a decrease in the lag time of ignition, which is appropriate for the proper operation of engines. 

Downloads

Download data is not yet available.

References

[1] Sajith V, Sobhan CB, Peterson GP. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances in Mechanical Engineering 2010;2:1-6.

[2] Basha SA., Gopal KR. A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews 2012;16(1):711-7.

[3] Yong-Qiang R, Zhi-Ning H, Yan F. Evaluation on combustion properties of nanoparticle as fuel additive. Advanced Materials Research 2011;335(336):1516-9.

[4] Jones M, Li CH, Afjeh A. Peterson G. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol). Nanoscale Research Letters 2011;6(246):1-12.

[5] Selvan M, Anand R, Udayakumar M. Effects of cerium oxide nanoparticle addition in diesel and diesel-biodiesel-ethanol blends on the performance and emission characteristics of a CI engine. ARPN Journal of Engineering and Applied Sciences 2009;4(7):1-6.

[6] Ganesh D, Gowrishankar G. Effect of Nano-fuel additive on emission reduction in a Biodiesel fuelled CI engine. IEEE International Conference in Electrical and Control Engineering 2011;3453-9.

[7] Elias M, Mahbubul I, Saidur R, Sohel M, Shahrul M, Khaleduzzaman S, Sadeghipour S. Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. International Communications in Heat and Mass Transfer 2014;54:48-53.

[8] Sundar L, Sharma K, Naik M, Singh K. Empirical and theorical correlations on viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews 2013;25:670-86.

[9] Chandrasekar M, Suresh S, Bose A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science 2010;34:210-6.

[10] Dadgostar N, Shaw J. A predictive correlation for the constant-pressure specific heat capacity of pure and ill-defined liquid hydrocarbons. Fluid Phase Equilibria 2011;313:211-26.

[11] Sivaramakrishnan K, Ammal A, Ravikumar P. Determination of higher heating value of biodiesels. International Journal of Engineering Science and Technology (IJEST) 2011;3(11):7981-7.

[12] Parhizgar H, Reza M, Eftekhari A. Modeling of vaporization enthalpies of petroleum fractions and pure hydrocarbons using genetic programming. Journal of Petroleum Science and Engineering 2013,112:97–104.

[13] Peñaloza A, Rincón A. Determinación del efecto del uso de nanopartículas de alúmina en mezcla diésel/biodiésel para mejora de propiedades fisicoquimicas y reducción de emisiones (Tesis Ingeniería Química) Cartagena, Colombia: Universidad de Cartagena; 2014.

[14] Tanvir S, Quiao L. Surface tension of Nanofluid-type fuels containing suspended nanomaterials. Nanoscale Research Letters 2012;7(226):1-10.

[15] Benjumea P, Agudelo J, Agudelo A. Basic properties of palm oil biodiesel-diesel blends. Fuel 2008, 87:2069-75.

[16] Rodriguez, J. Estimación de propiedades termodinámicas. En: Modelado, simulación y optimización de procesos químicos. Scenna N, Editor. Argentina: Editorial Edutecne; 1999, p. 303-27.

[17] Patil AR, Taji SG. Effect of oxigenated fuel additive on diesel engine performance an emission: A Review. IOSR Journal of Mechanical and Civil Engineering 2013;2320(334):30-5.

[18] Keskin A, Gürü M, Altıparmak D. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine. Energy Conversion and Management. 2011;52(1):60-5.

[19] Mehta R, Chakraborty M, Parikh P. Nanofuel: Combustion, engine performance and emissions. Fuel 2014;120:91-7.

[20] Bello A, Torres J, Herrera J, Sarmiento J. Effect of diesel properties on the emissions of particulate matter. CT&F. 2000;2(1):31-46.