Vol. 31 No. 2 (2018): Revista ION
Articles

Conformational, spectroscopic, NLO, HOMO-LUMO and reactivity of 1,3,5-triphenylpirazole computational study

Édgar Fabián Blanco-Acuña
Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
Liddier Pérez-Hincapié
Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
Alfredo Pérez-Gamboa
Programa de Química, Universidad del Atlántico, km 7 Vía a Puerto Colombia, Barranquilla-Colombia.
Grey Castellar-Ortega
Facultad de Ingeniería, Universidad Autónoma del Caribe, calle 90 n.° 46-112, Barranquilla-Colombia.
María Cely-Bautista
Facultad de Ingeniería, Universidad Autónoma del Caribe, calle 90 n.° 46-112, Barranquilla-Colombia.
Portada

Published 2019-01-17

Keywords

  • computational chemistry,
  • density functional theory (DFT),
  • 1,3,5-triphenylpyrazole,
  • nonlinear optics,
  • HOMO-LUMO orbitals,
  • reactivity descriptors
  • ...More
    Less

How to Cite

Blanco-Acuña, Édgar F., Pérez-Hincapié, L., Pérez-Gamboa, A., Castellar-Ortega, G., & Cely-Bautista, M. (2019). Conformational, spectroscopic, NLO, HOMO-LUMO and reactivity of 1,3,5-triphenylpirazole computational study. Revista ION, 31(2). https://doi.org/10.18273/revion.v31n2-2018004

Abstract

The structural parameters of 1,3,5-triphenylpyrazole were determined with DFT/cam-B3LYP with the base set 6-311++G(d,p). The results of the optimized molecular structure are presented and compared with the available X-ray data of the molecule or very similar molecules. A complete analysis of the observed spectra of the spectral measurements of FT-IR, NMR (1H and 13C) and UV-Vis absorption with TD-DFT in the same function and set of bases is provided. The descriptors of global and local reactivity have been determined. The NLO properties of this molecule were also investigated. The distributions of NPA and MEP loads are correlated. The calculated results and the experimental findings are discussed and correlated.

Downloads

Download data is not yet available.

References

[1] Schlenker C, Barlier V, Chin S, Whited M, McAnally E, Forrest S, et al. Cascade Organic Solar Cells. Chem. Mater. 2011;23:4132-40.

[2] Morse G, Gantz J, Steirer K, Armstrong N, Bender T. Pentafluorophenoxy Boron Subphthalocyanine (F5BsubPc) as a Multifunctional Material for Organic Photovoltaics. Appl. Mater. Interfaces. 2014;6:1515-24.

[3] Ronchi M, Pizzotti M, Orbelli A, Righetto S, Ugo R, Mussini P, et al. Second-order nonlinear optical (NLO) properties of a multichromophoric system based on an ensemble of four organic NLO chromophores nanoorganized on a cyclotetrasiloxane architecture. J. Phys. Chem. C. 2009; 113: 2745-60.

[4] Andreu R, Garín J, Orduna J, Alcalá R, Villacampa B. Novel NLO-phores with proaromatic donor and acceptor groups. Org. Lett. 2003;5:3143-46.

[5] Ruiz M, Casado J, Hernández V, López J, Orduna J, Villacampa B, et al. Electronic, optical, and vibrational properties of bridged dithienylethylene-based NLO chromophores. J. Phys. Chem. C. 2008;112: 3109-20.

[6] Saravanan S, Balachandran V. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV–Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory. Spectrochim. Acta A. 2015;138:406-23.

[7] Demircioglu Z, Albayrak C, Büyükgüngör O. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile. Spectrochim. Acta A. 2015;139:539-48.

[8] Gondek E. Photovoltaic solar cells based on pyrazole derivative. Mater. Lett. 2013;112:94-6.

[9] Amudha S, Austin S, Suthanthiraraj R, Maruthamuthu P. Performance characteristics of pyrazole as an effective dopant in a blended polymer electrolyte for nanocrystalline dye-sensitized solar cell applications. Chem. Sci. Trans. 2013;2:S141-S146.

[10] Ocaya R, Al-Sehemi G.A., Al-Ghamdi A, El-Tantawy F, Yakuphanoglu F. “Organic semiconductor photosensors”. Journal of Alloys and Compounds, 2017;702:520-30.

[11] Costa J, Taveira R, Lima C, Mendes A, Santos L. Optical band gaps of organic semiconductor materials. Optical Materials, 2016;58:51-60.

[12] Akhtari K, Hassanzadeh K, Fakhraei B, Fakhraei N, Hassanzadeh H, Zarei A. A density functional theory study of the reactivity descriptors and antioxidant behavior of Crocin. Comput. Theor. Chem. 2013;1013:123-29.

[13] Tathe A, Gupta V, Sekar N. Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dyes and Pigments. 2015;119:49-55.

[14] Suvitha A, Periandy S, Gayathri P. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime. Spectrochimica Acta A. 2014;117:216-24.

[15] Romani E, Brandán S. Structural and spectroscopic studies of two 1,3-benzothiazole tautomers with potential antimicrobial activity in different media. Prediction of their reactivities. Computational andTheoretical Chemistry, 2015;1061:89-99.

[16] Romani E, Ladetto M, Brandán S. Structural and vibrational studies of the potential anticancer agent, 5-difluoromethyl-1,3,4-thiadiazole-2-amino by DFT calculations. Comput. Theor. Chem. 2013;1011:57-64.

[17] Kutsyna L, Korneeva O. The electronic structure of 1,3,5-triphenylpyrazole. J. App. Spec, 1971;15(2):1027-31.

[18] Akhtari K, Hassanzadeh K, Fakhraei B, Fakhraei N, Hassanzadeh H, Zarei S. A density functional theory study of the reactivity descriptors and antioxidant behavior of Crocin. Comput. Theor. Chem. 2013;1013:123-29.

[19] Nuñez F, Arguello E, Vivas R. Density functional study on electronic structures and reactivity in methyl-substituted chelates used in organic light-emitting diodes. Int. J. Quantum Chem, 2010;110(9):1622-36.

[20] Dennington R, Keith T, Millam J. GaussView, Version 5. Semichem Inc., Shawnee Mission, KS, (2009).

[21] Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et. al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

[22] Paschoal D, Dos Santos H. Assessing the quantum mechanical level of theory for prediction of linear and nonlinear optical properties of push-pull organic molecules. J. Mol. Mod. 2013;19:2079-90.

[23] Wazzan N, Al-Qurashi O, Faidallah H. DFT/ and TD-DFT/PCM calculations of molecular structure, spectroscopic characterization, NLO and NBO analyses of 4-(4-chlorophenyl) and 4-[4-(dimethylamino) phenyl]-2-oxo-1,2,5,6-tetrahydrobenzo[H]quinoline-3-carbonitrile dyes. J. Mol. Liq. 2016;223:29-47.

[24] Gil D, Defonsi M, Estévez-Hernández O, Duque J, Reguera E. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and HOMO-LUMO analysis of 1-benzyl-3-(2-furoyl) thiourea, Spectrochim. Acta A. 2015;145:553-62.

[25] Sundaraganesan N, Ilakiamani S, Saleem H, Wojciechowski P, Michalska D. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochim. Acta A. 2005;61:2995–3001.

[26] CambridgeSoft. PerkinElmer. Versión 13.0.0.3015. 1996-2012.

[27] Mestrelab Research S.L. Version 60.2.-5475. 2009.

[28] Trotter J. Bond lengths in benzene derivatives: Hybridization or resonance. Tetrahedron. 1960;8:13-22.

[29] Shetty M, Samant S. Sulfamic Acid (H2NSO3H): A low-cost, mild, and efficient catalyst for the synthesis of substituted N-Phenylpyrazoles under solvent-free conditions. Synthetic Commun. 2012;42:1411-18.

[30] Sharma Y. Elementary Organic Spectroscopy, principles and chemical applications. India: Chande & Company Ltd.; 1994.

[31] Krishnakumar V, Manohar S, Nagalakshmi R. Crystal growth and characterization of N-hydroxyphthalimide (C8H5NO3) crystal. Spectrochim. Acta A. 2008;71:110-5.

[32] Ananthnag G, Adhikari A, Balakrishna M. Iron-catalyzed aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines. Catal. Commun. 2014;43:240-3.

[33] Nakamichi N, Kawashita Y, Hayashi M. Oxidative aromatization of 1,3,5-Trisubstituted pyrazolines and hantzsch 1,4-dihydropyridines by Pd/C in acetic acid. Org. Lett. 2002;4(22):3955-7.

[34] Han B, Liu Z, Liu Q, Yang L, Liu Z-L, Yu W. An efficient aerobic oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Tetrahedron. 2006;62(11):2492-96.

[35] Carrillo J, Cossı́o, F, Dı́az-Ortiz A, Gómez-Escalonilla M, Begoña A, Moreno A, Prieto P. A complete model for the prediction of 1H- and 13C-NMR chemical shifts and torsional angles in phenyl-substituted pyrazoles”. Tetrahedron. 2001;57:4179-87.

[36] Begtrup M, Vedsù P, Cabildo P, Claramunt RM, Elguero J, Meutermans W. 13C NMR of pyrazoles. Magn. Reson. Chem. 1992;30:107-68.

[37] Ando W, Sato R, Yamashita M, Akasaka T, Miyazaki H. Quenching of singlet oxygen by 1,3,5-triaryl-2-pyrazolines. J. Org. Chem. 1983;48:542-6.

[38] Arjunan V, Balamourougane P, Kalaivani M, Raj A, Mohan S. Experimental and theoretical quantum chemical investigations of 8-hydroxy-5-nitroquinoline. Spectrochim. Acta A. 2012;96:506-16.

[39] Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982;218:747-54.

[40] López J, Ensuncho A, Robles J. Estudio teórico de la reactividad química y biológica de cisplatino y algunos derivados con actividad anticancerosa. Información Tecnológica. 2013;24(3):3-14.

[41] Pearson R. Hard and soft acids and Basis. J. Am. Chem. Soc. 1963;85(22):3533-39.

[42] Parr R, Pearson R. Absolute hardness: companion parameter to absolute electronegativity. J.Am. Chem. Soc. 1983;105(26):7512-16.

[43] Chandrasekaran K, Kumar R. Structural, spectral, thermodynamical, NLO, HOMO, LUMO and NBO analysis of fluconazole. Spectrochim. Acta A. 2015;150:974-91.