Vol. 32 Núm. 2 (2019): Revista ION
Artículos

Inmobilización de lipasa en biochar obtenida de Manihot Esculenta Crantz

Lívia Maria de Oliveira Ribeiro
Laboratório de Processos (LAPRO), Centro de Tecnologia, Universidade Federal de Alagoas
Lucas Meili
Laboratório de Processos (LAPRO), Centro de Tecnologia, Universidade Federal de Alagoas
Geórgia N.S.B. Góis
Laboratório de Processos (LAPRO), Centro de Tecnologia, Universidade Federal de Alagoas
Renata Maria Rosas Garcia Almeida
Centro de Tecnologia, Universidade Federal de Alagoas
Jose Leandro da Silva Duarte
Laboratório de Processos (LAPRO), Centro de Tecnologia, Universidade Federal de Alagoas

Publicado 2019-11-12

Palabras clave

  • Enzima,
  • Adsorción,
  • Material Poroso

Cómo citar

Ribeiro, L. M. de O., Meili, L., Góis, G. N., Almeida, R. M. R. G., & Duarte, J. L. da S. (2019). Inmobilización de lipasa en biochar obtenida de Manihot Esculenta Crantz. Revista ION, 32(2), 7–13. https://doi.org/10.18273/revion.v32n2-2019001

Resumen

Las enzimas inmovilizadas son catalizadores de gran interés industrial, ya que unen las ventajas de la catálisis heterogénea con la alta selectividad y las condiciones de operación suaves de las enzimas. El biochar es un material carbonoso poroso, que tiene la característica de que es un fuerte candidato para incorporar enzimas en su estructura. Otro hecho relevante es la posibilidad de cambios y adaptaciones por condición de síntesis en la estructura de Biochar debido a las necesidades de la aplicación. En este contexto, el objetivo de este trabajo fue el estudio de la inmovilización de lipasa en un biochar producido por pirólisis (600 °C) de un residuo agrícola llamado tocón de yuca. Se evaluaron diferentes concentraciones enzimáticas (0,1, 0,25 y 0,5 g / L) para determinar la afinidad entre la enzima y el biochar. Los resultados obtenidos mostraron que la enzima estudiada se podía inmovilizar fácilmente en el biochar, obteniendo como rendimiento de inmovilización 61,2 % cuando se usa la mayor concentración de enzima.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Chibata I. Immobilized Enzymes: Research and Development. New York: Kodonsha-Tokyo; 1978.

[2] Bobbio FO, Bobbio PA. Introdução à Química de Alimentos. 2. ed. São Paulo: Varela;1995.

[3] Faber K. Biotransformations in Organic Chemistry. 6. ed. Berlin: Springer-Verlag; 2011.

[4] Ribeiro LMO, Falleiros LNSS, de Resende MM. et al. Immobilization of the enzyme invertase in SBA-15 with surfaces functionalized by different organic compounds. J Porous Mater. 2019;26:77-89.

[5] Moffat G, Williams R, Webb C, Stirling R. Selective separations in environmental and industrial processes uding magnetic Carrier technology. Minerals Engineering. 1994;7(8):1039-56.

[6] Palomo JM, Segura RL, Fernandez-Lorente G, Fernandez-Lafuente R, Guisán JM. Glutaraldehyde modification of lipases adsorbed on aminated supports: A simple way to improve their behaviour as enantioselective biocatalyst. Enzyme and Microbial Technology. 2007;40(4):704-7.

[7] Cantarelli C. The use of immobilized yeasts in wine fermentation. Journal of Food Science. 1989;3:3-20.

[8] Canilha L, Carvalho W, Silva JBA. Biocatalisadores imobilizados. Biotecnologia Ciência e Desenvolvimento. 2006;ano IX(36):48-57.

[9] Marquez LDS, Cabral BV, Cardoso VL, Ribeiro, EJ. Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. Journal of molecular catalysis B: Enzymatic. 2008;51(3-4):86-92.

[10] Yang LM, Wang YJ, Luo GS, Daí YY. Functionalization of SBA-15 mesoporous sílica with thiol or sulfonic acid groups under the crystallization conditions. Microporous and Mesoporous Materials. 2005;84(1-3):275-82.

[11] Vieira EA. Recursos genéticos e melhoramento da mandioca. Brasil: Empresa Brasileira de Pesquisa Agropecuária - Embrapa Cerrados Ministério da Agricultura, Pecuária e Abastecimento; 2011.

[12] Khadem A, Raiesi F. Influence of biochar on potential enzyme activities in two calcareous soils of contrasting texture. Geoderma. 2017;308:149–58.

[13] Demisie W, Liu Z, Zhang M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena. 2014;121:214–21.

[14] Günal E, Erdem H, Demirbaş A. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures. Archives of Agronomy and Soil Science. 2018;64(14):1963-74.

[15] Wang X, Song D, Liang G, Zhang Q, Ai C, Zhou W. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl Soil Ecol. 2015;96:265–72.

[16] Dixon M, Webb EC. Enzymes. 3. ed. London: Longman Group; 1979.

[17] Arroyo M. Inmobilización de enzimas. Fundamentos, métodos y aplicaciones. Ars Pharmaceutica. 1998;39(2):23-39.

[18] Uhlig H. Industrial enzymes end their applications. New York, United States: John Wiley & Sons; 1998.

[19] Michaelis L, Menten ML. Kinetics of invertase action. Biochemische Zeitschrift. 1913;49:333-69.

[20] Meili L, Godoy RPS, Soletti JI, Carvalho SHV, Ribeiro LMO, Silva MGC, Gimenes ML. Cassava (Manihot esculenta Crantz) stump biochar: Physical/chemical characteristics and dye affinity. Chemical Engineering Communications. 2019;206(7):829-41.

[21] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1-2):248-54.

[22] Hermanová S, Zarevúcká M, Bousa D, Pumera M, Sofer Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale. 2015;7(13):5852-8.

[23] Motta VT. Enzimas. In: Bioquímica básica. Motta VT. Brasil: MedBook; 2011. p. 68-101.

[24] Moré JJ. The Levenberg–Marquardt Algorithm: Implementation and Theory. In: Numerical analysis. Moré JJ. Berlin: Springer; 1977. p. 105–16.

[25] González ME, Cea M, Sangaletti N, González A, Toro C, Diez MC, Navia R. Biochar Derived from Agricultural and Forestry Residual Biomass: Characterization and Potential Application for Enzymes Immobilization. Journal of Biobased Materials and Bioenergy. 2013;7(6):724–732.doi.org/10.1166/jbmb.2013.1373.

[26] Almeida Lays C, Barbosa Anderson S, FricksAlini T, Freitas Lisiane S, Lima Alvaro S, SoaresCleide MF. Use of conventional or non- ́ conventional treatments of biochar for lipase immobilization. Process Biochemistry. 2017;61:124-9.http://dx.doi.org/10.1016/j.procbio.2017.06.020.

[27] Li N, Xia Q, Niu M, Ping Q, Xiao H. Immobilizing Laccase on Different Species Wood Biochar to Remove the Chlorinated Biphenyl in Wastewater. Scientific reports. 2018;8(1):1-9.

[28] Santos MP, Brito MJ, Junior EC, Bonomo RC, Veloso CM. Pepsin immobilization on biochar by adsorption and covalent binding, and its application for hydrolysis of bovine casein. J. Chem. Technol. Biotechnol. 2019;94(6):1982-90. https://doi.org/10.1002/jctb.5981.