Evaluación del índice de geoacumulación de algunos metales pesados en suelos de cultivo de hortalizas en la ribera del río Bogotá
Publicado 2021-05-24
Palavras-chave
- Espectrofotometria de absorção atômica,
- índice de geoacumulação,
- forno de grafite,
- metais pesados,
- Rio Bogotá
Como Citar
Copyright (c) 2021 Walter Hernando Perez Mora
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Resumo
O aumento da população e, consequentemente, a alta demanda nos processos de industrialização de diferentes complexidades, causaram diversos problemas ambientais, como o aumento da concentração de metais pesados, que causam diversos efeitos na saúde, em diferentes matrizes ambientais, principalmente a água que Geralmente é o primeiro destino para o despejo, a água que, particularmente no caso colombiano, é usada para irrigação em solos cultivados. Nesse sentido, neste estudo, foram analisados solos cultivados nos municípios de Sibaté, Tenjo, Mosquera, Facatativá Siberia, no departamento de Cundinamarca, e na cidade de Bosa, na cidade de Bogotá, Colômbia, influenciada pelo leito do rio. do rio Bogotá, medindo as concentrações de cromo, cádmio, chumbo e níquel por espectrofotometria de absorção atômica com forno de grafite. Para avaliar o grau de contaminação, calculou-se o índice de geoacumulação, constatando que os solos são classificados como moderados e extremamente contaminados, principalmente no teor de cromo em todas as áreas amostradas e chumbo e cádmio na área de Sibaté. Recomenda-se analisar o conteúdo em vegetais para avaliar o efeito nas cadeias alimentares.
Downloads
Referências
[2] Gebeyehu HR, Bayissa LD. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS One. 2020;15(1):1–22.
[3] Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. Experentia Supl. 2014;101:133– 64.
[4] Pereira Faria FB, Rozane DE, Romeiro S, Barth G, Josemara R, Queiroz B, et al. Cadmium availability and accumulation by lettuce rice. Rev Bras Ciência do Solo. 2011;35:645–54.
[5] Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, et al. Unravelling cadmium toxicity and tolerance in plants : Insight into regulatory mechanisms. Environ Exp Bot. 2012;83:33–46.
[6] Zorrig W, El Khouni A, Ghnaya T, Davidian JC, Abdelly C, & Berthomieu P. Lettuce (Lactuca sativa): a species with a high capacity for cadmium (Cd) accumulation and growth stimulation in the presence of low Cd concentrations. J Hortic Sci Biotechonol. 2013;88(6):783-789.
[7] Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E. Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochemical Explor [Internet]. 2014;144:290– 7. Available from: http://dx.doi.org/10.1016/j.
gexplo.2014.01.003.
[8] Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR). Resumen de salud pública Níquel CAS#: 7440-02-0 [Internet]. 2005. Available from: www.atsdr.cdc.gov/es.
[9] Sun H, Brocato J, Costa M. Oral Chromium Exposure and Toxicity. Curr Environ Heal Reports. 2016;2(3):295–303.
[10] Miranda D, Carranza C, Rojas C, Jerez C, Fischer G, Zurita J. Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas, regados con agua del río Bogotá. Rev Colomb Ciencias Hortícolas. 2008;2(2):180–91.
[11] Silva J, Torres P, Madera C. Reuso de aguas residuales domésticas en agricultura . Una revisión. Agron Colomb. 2008;26(2):347–59.
[12] Conpes. Conpes 3320 Estrategia para el manejo ambiental del río Bogotá. 2004.
[13] Combariza DA. Contaminación por metales pesados en el embalse del muña y su relación con los niveles en sangre de plomo, mercurio y cadmio y alteraciones de salud en los habitantes del municipio de Sibaté (Cundinamarca) 2007. Universidad Nacional de Colombia; 2009.
[14] (CAR). Acuerdo número 43 del 17 de octubre de 2006 Por el cual se establecen los objetivos de calidad del agua para la cuenca del río Bogotá a lograr en el año 2020. Bogotá: Corporación autónoma regional de cundinamarca; 2006. p. 1–16.
[15] Huang L, Rad S, Xu L, Gui L, Song X, Li Y, et al. Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland , South China. Water. 2020;12:1–14.
[16] Eissa MA, Negim OE. Heavy metals uptake and translocation by lettuce and spinach grown on a metal contaminated soil. J Soil Sci Plant Nutr. 2018;18(4):1097–107.
[17] Ahmed M, Matsumoto M, Ozaki A, Thinh N Van. Heavy Metal Contamination of Irrigation Water, Soil, and Vegetables and the Difference between Dry and Wet Seasons Near a Multi- Industry Zone. Water. 2019;11:1–12.
[18] ISO. ISO 18400-205:2018. Soil quality — Sampling — Part 205: Guidance on the procedure for investigation of natural, nearnatural and cultivated sites. ISO, editor. International Organization for Standardization; 2018. 15 p.
[19] ISO. ISO 11047:1998 Soil quality -- Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc -- Flame and electrothermal atomic absorption spectrometric methods. 1st ed. International standardization organization; 1998. 24 p.
[20] Muller G. Index of geoaccumulation in sediments of the Rhine River. Geo J. 1969;2:108–18.
[21] Eqani ASMAS, Kanwal A, Kumar A, Sohail M, Ullah R, Maria S, et al. Spatial distribution of dust e bound trace elements in Pakistan and their implications for human exposure *. Environ Pollut. 2016;213:213–22.
[22] Charzyński P, Plak A, Hanaka A. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environ Sci Pollut Res. 2017;24:4801–11.
[23] Hanif N, Ali S, Akber M, Eqani S, Maria S, Cincinelli A, et al. Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. J Geochemical Explor. 2016;165:62–70.
[24] Machado dos Santos N, Araújo do Nascimiento CW, Aguiar Accioly AM de. Guideline Values and Metal Contamination in Soils of an Environmentally Guideline Values and Metal Contamination in Soils of an Environmentally
Impacted Bay. Water Air Soil Pollut. 2017;(March):1–12.
[25] Matamet FRM, Bonotto DM. Evaluation of the chromium contamination at Ribeirão dos Bagres , Franca ( SP ), Brazil , by the 210 Pb method. Appl Radiat Isot. 2013;82:359–69.
[26] Jordao CP, Pereira JL, Jham GN. Chromium contamination in sediment , vegetation and fish caused by tanneries in the State of Minas Gerais , Brazil. Sci Total Environ. 1997;207:1–11.
[27] Tumanyan AF, Shcherbakova NA, Tusaint F, Seliverstova AP, Tyutyuma N V. Heavy Metals contents in solid and vegetables of southern Russia. Chem Technol Fuels Oilsils. 2018;54(6):766–70.
[28] Yang J, Ma S, Zhou J, Song Y, Li F. Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye, China. J Int Med Res. 2018;46(8):3374–87.
[29] Intawongse M, Dean JR. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam. 2007.
[30] Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, et al. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front Plant Sci. 2016;7(May):1–12.