v. 34 n. 2 (2021): Revista ION
Artigos

Tratamento de águas residuais produzidas no processo de imersão em curtumes utilizando ozônio e ferro como catalizador

Karen Tatiana Rodríguez Agudelo
Universidad Libre
Rafael Nikolay Agudelo Valencia
Universidad Libre
María Claudia Caicedo Jiménez
Universidad ECCI

Publicado 2021-09-13

Palavras-chave

  • Águas residuais de curtume,
  • Catalisador,
  • Ferro ferroso,
  • Ozônio,
  • Rremolh,
  • pH
  • ...Mais
    Menos

Como Citar

Rodríguez Agudelo, K. T., Agudelo Valencia, R. N., & Caicedo Jiménez, M. C. (2021). Tratamento de águas residuais produzidas no processo de imersão em curtumes utilizando ozônio e ferro como catalizador. REVISTA ION, 34(2), 105–113. https://doi.org/10.18273/revion.v34n2-2021010

Resumo

O tratamento do efluente gerado no processo de imersão em curtumes foi analisado por meio da oxidação
com ozônio e ferro ferroso para catalisar a mineralização da matéria orgânica (medida em termos de DQO). Os testes foram realizados em batelada e com tempo de reação constante. A água residual dos testes foi fornecida por uma empresa de curtimento de couro localizada no município de Villapinzón, Colômbia. Foi utilizado um planejamento experimental fatorial do tipo 32, os fatores experimentais foram o pH inicial da água residual (4,7 e 10) e a dose de Fe2+ na água e as variáveis de resposta foram os percentuais de remoção de turbidez e DQO. Os resultados indicam que a remoção máxima de turbidez é alcançada pelo pH alcalino e no caso da DQO a maior remoção foi de 92,13% e é alcançada para as doses de pH 10 e 10 mgL-1 de Fe2+. O tempo de reação utilizado para cada teste foi de 2 horas, de forma que a dose de ozônio foi de 4 gL-1 e o consumo de energia foi de 0,021 kWhg-1DQOremovido.

Downloads

Não há dados estatísticos.

Referências

[1] Sawalha H, Al-Jabari M, Elhamouz A, Abusafa A, Rene ER. Tannery wastewater treatment and resource recovery options. Waste Biorefin. 2020; 679-705.

[2] Elabbas S, Ouazzani N, Mandi L, Berrekhis F, Perdicakis M, Pontvianne S, et al. Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode. J. Hazard.
Mater. 2016; 319: 69-77.

[3] Lazo Cuentas EA. Evaluación De La Contaminación Ambiental Generada Por Efluentes Industriales En El Proceso
Productivo De Una Curtiembre De Mediana Capacidad Del Parque Industrial De Rio Seco, Arequipa. Arequipa, Perú; 2017.

[4] Borba FH, Seibert D, Pellenz L, Espinoza FR, Borba CE, Módenes AN, et al. Desirability function applied to the optimization of the Photoperoxi-Electrocoagulation process conditions in the treatment of tannery industrial
wastewater. J. Water Process Eng. 2018; 23: 207-16.

[5] Varilla J, Díaz F. Tratamiento de aguas residuales mediante lodos activados a escala laboratorio. Rev. de Tecnol. 2008; 7(2): 21-28.

[6] Velásquez S, Giraldo D, Cardona N. Reciclaje de residuos de cuero: una revisión de estudios experimentales. Inf. Tec. 2015; 79(2): 188-98.

[7] Das C, DasGupta S, De S. Treatment of soaking effluent from a tannery using membrane separation processes. Desalineation. 2007; 216(1-3): 160-73.

[8] Sawalha H, Alsharabaty R, Sarsour S, Al- Jabari M. Wastewater from leather tanning and processing in Palestine: Characterization and management aspects. J. Environ. Manage. 2019; 251: 109596.

[9] Lofrano G, Meric S, Emel G, Orhon D. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Sci.Total Environ. 2013; 461-462: 265-81.

[10] Hashem A, Nur-A-Tomal S, Bushra SA. Oxidation-coagulation-filtration processes for the reduction of sulfide from the hair burning liming wastewater in tannery. J. Cleaner Prod. 2016; 127: 339-42.

[11] Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, et al. Gentoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus Cereus. J. of Environ. Manage. 2016; 183(1): 204-11.

[12] da Fontoura JT, Rolim GS, Farenzena M, Farenzena M, Gutterrez. Influence of light intensity and tannery wastewater concentration on biomass production and nutrientremoval by microalgae Scenedesmus sp. Process Saf.
Environ. Prot. 2017; 111: 355-62.

[13] Shakir L, Ejaz S, Ashraf M, Qureshi NA, Iltaf Im, Javeed A. Ecotoxicological risks associated with tannery effluent wastewater. Environ. Toxicol. Pharmacol. 2012; 34(2): 180-91.

[14] Maharaja P, Magthalian C, Mahesh M, Sunkapur LK, Swarnalatha S, Sekaran G. Treatment of tannery saline wastewater by using effective immobilized protease catalyst produced from salt tolerant Enterococcus feacalis. J. Environ. Chem. Eng. 2017; 5(2): 2042-55.

[15] Papageorgiou A, Stylianou SK, Kaffes P, Zouboulis AI, Voutsa D. Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter e Possible implications on the formation of ozonation by products. Chemosphere. 2017; 170: 33-40.

[16] Cerón P. Estudio de un sistema físico-químico a escala prototipo de tratamiento de aguas residuales provenientes de una curtiembre. (Tesis de grado). Quito, Ecuador: Univesidad San Francisco de Quito; 2011.

[17] Lefebvrea O, Vasudevan N, Torrijos M, Thanasekaran K, Moletta R. Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water Res. 2006; 40(7): 1492-1500.

[18] Sekar S, Sivaprakasam S, Mahadevan. Investigations on ultraviolet light and nitrous acid induced mutations of halotolerant bacterial strains for the treatment of tannery soak liquor. Int. Biodeterior. Biodegrad. 2009; 63(2): 176-81.

[19] Pounsamy M, Somasundaram S, Palanivel S, Balasubramani R, Chang SW, Nguyen DD, Ganesan S, et al. A novel protease-immobilized carbon catalyst for the effective fragmentation of proteins in high-TDS wastewater generated in tanneries: Spectral and electrochemical studies. Environ. Res. 2019; 172: 408-19.

[20] Asghar A, Raman AAA, Daud WMAW. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Cleaner Prod. 2015; 87: 826–38.

[21] Huang Y, Luo M, Xu Z, Zhang D, Li L. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst. Sep. Purif. Technol. 2019; 211: 269–278.

[22] Ribeiro AR, Nunes OC, Pereira MR, Silva AMTT. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. 2015; 75: 33–51.

[23] Wu J, Ma L, Chen Y, Cheng Y, Liu Y, Zha X. Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways. Water Res 2016; 92:140–48.

[24] Giaccherini F, Munz G, Dockhorn T, Lubello C, Rosso D. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview. Water Resour. Ind. 2017; 17: 43–52.

[25] Quintero GP, Quijano A, Melendez I. Efecto Genotoxico del agua residual de la curtiembre de San Faustino-Norte de Santander Colombia. Revista Colombiana de Tecnol. Av. 2018; 2(32): 8-16.

[26] Castañeda YL, Vargas R, Césare MF, Visitación L. Evaluación y tratamiento de efluentes del remojo convencional y enzimático de pieles, por precipitación de proteínas y coagulación. Rev. Soc. Quím. Perú, 2016; 82(4): 440-53.

[27] American Public Health Association, American Water Works Association, water environment federation, Standard methods for the examination of water and wastewater. New York, USA; 2017.

[28] Sun Y, Li J, Huang T, Guan X. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. Water Res. 2016; 100: 277–295.

[29] Huang Y, Jiang J, Ma L, Wang Y, Liang M, Zhang Z, et al. Iron foam combined ozonation for enhanced treatment of pharmaceutical wastewater. Environ. Res. 2020 ; 183 : 109205.

[30] Ulson, SMDAG, Bonilla KAS, de Souza AAU. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater. 2010; 179: 35-42.