v. 35 n. 1 (2022): Revista ION
Artigos

Avaliação físico-química de compósitos madeira-plástico aplicados ao design de produtos

Ana Jessica Morales Rivera Morales Rivera
Universidad Autónoma de Ciudad Juárez
Santos Adriana Martel-Estrada
Universidad Autónoma de Ciudad Juárez
Imelda Olivas Armendáriz
Universidad Autónoma de Ciudad Juárez
Fátima Aguilar Cera
Universidad Autónoma de Ciudad Juárez

Publicado 2022-06-21

Palavras-chave

  • Resíduos de madeira,
  • Popplar,
  • Policaprolactona,
  • Compósito madeira-plástico,
  • Microscopia eletrônica de varredura,
  • Espectroscopia infravermelha
  • ...Mais
    Menos

Como Citar

Morales Rivera, A. J. M. R., Martel-Estrada, S. A., Olivas Armendáriz, I. ., & Aguilar Cera, F. . (2022). Avaliação físico-química de compósitos madeira-plástico aplicados ao design de produtos. REVISTA ION, 35(1), 7–16. https://doi.org/10.18273/revion.v35n1-2022001

Resumo

A eliminação de resíduos de madeira, comumente tratados como desperdício, ocasiona problemas em seu processo de descarte. Atualmente, as fibras são utilizadas na produção de papel, material de construção e bioplásticos; embora materiais compostos de madeira-plástico tenham sido desenvolvidos anteriormente, não há relatos de algum com matriz de policaprolactona. Durante a presente pesquisa,
foram desenvolvidos materiais compósitos de policaprolactona-farinha de madeira de choupo que foram
caracterizados por meio de microscopia eletrônica de varredura, espectroscopia de infravermelho por transformada de Fourier, biodegradação, teste de absorção de água, propriedades mecânicas de flexão em três pontos e varredura de temperatura. Imagens de microscopia eletrônica mostraram materiais compostos com uniformidade na matriz, a espectroscopia mostrou interação do grupo carbonil de policaprolactona e da ligação elástica O-C-O com os grupos de madeira OH. Os materiais compostos são resistentes à degradação hidrolítica mesmo sob os efeitos dos raios UV. De acordo com os resultados alcançados, foi obtido um material adequado para uso em projeto de produto, para o qual foi finalmente gerada uma proposta formal de design.

 

Downloads

Não há dados estatísticos.

Referências

  1. Zhou Y, Stanchev P, Katsou E, Awad S, Fan M. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Waste Manage. 2019;99:42-8.
  2. Keskisaari A, Kärki T. The use of waste materials in wood-plastic composites and their impact on the profitability of the product. Resour Conserv Recycl. 2018;134:257-61.
  3. Azwa Z, Yousif B, Manalo A, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013;47:424-42.
  4. Catto AL, Montagna LS, Almeida SH, Silveira RM, Santana RM. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. Int. Biodeterior. Biodegradation. 2016;109:11-22.
  5. Ramesh RS, Sadashivappa K, Sharanaprabhu L. Physical and Mechanical Properties: Hot pressed Phenol Formaldehyde based Wood Plastic Composite. Materials Today: Proceedings. 2018;5(11, Part 3):25331-40.
  6. Hyvärinen M, Ronkanen M, Kärki T. The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite. Compos. Struct. 2019;210:321-6.
  7. Jamekhorshid A, Sadrameli SM, Barzin R, Farid MM. Composite of wood-plastic and microencapsulated phase change material (MEPCM) used for thermal energy storage. Appl. Therm. Eng. 2017;112:82-8.
  8. Chan CM, Vandi L-J, Pratt S, Halley P, Richardson D, Werker A, et al. Mechanical performance and long-term indoor stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) modified by non-reactive additives. Eur. Polym. J. 2018;98:337-46.
  9. Fornasieri M, Alves JW, Muniz EC, Ruvolo-Filho A, Otaguro H, Rubira AF, et al. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Composites Part A: Applied Science and Manufacturing. 2011;42(2):189-95.
  10. Kazemi Najafi S. Use of recycled plastics in wood plastic composites - a review. Waste Manag. 2013;33(9):1898-905.
  11. Turku I, Keskisaari A, Kärki T, Puurtinen A, Marttila P. Characterization of wood plastic composites manufactured from recycled plastic blends. Compos. Struct. 2017;161:469-76.
  12. Taufiq MJ, Mansor MR, Mustafa Z. Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend. Compos. Struct. 2018;189:510-5.
  13. Vedrtnam A, Kumar S, Chaturvedi S. Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of woodplastic composites. Composites Part B: Engineering. 2019;176:107282.
  14. Lin X, Zhang Z, Zhang Z, Sun J, Wang Q, Pittman CU. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts. Waste Manage. 2018;79:38-47.
  15. Toghyani A, Matthews S, Varis J. Effect of dwell time and press speed on the forming quality of the press formed wood plastic composite product. Procedia CIRP. 2019;81:524-8.
  16. Animpong MAB, Oduro WO, Koranteng J, Ampomah-Benefo K, Boafo-Mensah G, Akufo-Kumi K, et al. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels. S. Afr. J. Chem. Eng. 2017;24:55-61.
  17. Kaboorani A. Characterizing water sorption and diffusion properties of wood/plastic composites as a function of formulation design. Constr Build Mater. 2017;136:164-72.
  18. Koohestani B, Ganetri I, Yilmaz E. Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Composites Part B: Engineering. 2017;111:103-11.
  19. Palm A, Smith J, Driscoll M, Smith L, Scott Larsen L. Chemical constituent influence on ionizing radiation treatment of a wood–plastic composite. Radiat. Phys. Chem. 2016;124:164-8.
  20. Youssef AM, Hasanin MS, Abd El-Aziz ME, Darwesh OM. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon. 2019;5(3):e01332.
  21. Jiang L, He C, Fu J, Wang L. Serviceability analysis of wood–plastic composites impregnated with paraffin-based Pickering emulsions in simulated sea water–acid rain conditions. Polym. Test. 2018;70:73-80.
  22. Ge S-b, Gu H-P, Ma J-j, Yang H-Q, Jiang S-c, Liu Z, et al. Potential use of different kinds of carbon in production of decayed wood plastic composite. Arab. J. Chem. 2018;11(6):838-43.
  23. Matthews S, Toghyani AE, Ovaska S-S, Hyvärinen M, Tanninen P, Leminen V, et al. Role of moisture on press formed products made of Wood Plastic Composites. Procedia Manuf. 2018;17:1090-6.
  24. Petchwattana N, Sanetuntikul J, Sriromreun P, Narupai B. Wood Plastic Composites Prepared from Biodegradable Poly(butylene succinate) and Burma Padauk Sawdust (Pterocarpus macrocarpus): Water Absorption Kinetics and Sunlight Exposure Investigations. J. Bionic Eng. 2017;14(4):781-90.
  25. Jiang Y, Yarin AL, Pan Y. Printable highly transparent natural fiber composites. Mater. Lett. 2020;277:128290.
  26. Vanitha R, Kavitha C. Development of natural cellulose fiber and its food packaging application. Materials Today: Proceedings. 2020.
  27. Hariprasad K, Ravichandran K, Jayaseelan V, Muthuramalingam T. Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. J. Mater. Res. Technol. 2020;9(6):14029-35.
  28. Le Duigou A, Correa D, Ueda M, Matsuzaki R, Castro M. A review of 3D and 4D printing of natural fibre biocomposites. Materials & Design. 2020;194:108911.
  29. Dittenber DB, GangaRao HVS. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012;43(8):1419-29.
  30. Ding W-D, Koubaa A, Chaala A. Mechanical properties of MMA-hardened hybrid poplar wood. Industrial Crops and Products. 2013;46:304-10.
  31. Woodruff MA, Hutmacher DW. The return of 21st century. Progress in Polymer Science. 2010;35(10):1217-56.
  32. Samoladas A, Bikiaris D, Zorba T, Paraskevopoulos KM, Jannakoudakis A. Photochromic behavior of spiropyran in polystyrene and polycaprolactone thin films – Effect of UV absorber and antioxidant compound. Dyes Pigm. 2008;76(2):386-93.
  33. Karana E, Barati, B., Rognoli, V., van der Laan. Material driven design (MDD): a method to design for material experiences. International Journal of Design. 2015;9(2):35-54.
  34. Gao X, Lin L, Pang J, Chen F, Li Q. Effects of impulse-cyclone drying and silane modification on the properties of wood fiber/HDPE composite material. Carbohydrate Polymers. 2019;207:343-51.
  35. Pavliňáková V, Fohlerová Z, Pavliňák D, Khunová V, Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Materials Science and Engineering: C. 2018;91:94-102.
  36. Tiwari AP, Joshi MK, Lee J, Maharjan B, Ko SW, Park CH, et al. Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. COLLOID SURF. A-PHYSICOCHEM. ENG. ASP. 2017;520:105-13.
  37. Chaudemanche S, Perrot A, Pimbert S, Lecompte T, Faure F. Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles. Constr Build Mater. 2018;162:543-52.
  38. Amokrane G, Falentin-Daudré C, Ramtani S, Migonney V. A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. IRBM. 2018;39(4):268-78.
  39. Unsal O, Candan Z, Korkut S. Wettability and roughness characteristics of modified wood boards using a hot-press. Ind Crops Prod. 2011;34(3):1455-7.
  40. Scărlătescu DD, Modrea A, Stanciu MD. Threepoint Bend Test to Determine the Mechanical Behavior of the Tubes Used in Water Supply Networks. Procedia Manufacturing. 2019;32:179-86.
  41. Esmaeilzadeh J, Hesaraki S, Hadavi SM-M, Ebrahimzadeh MH, Esfandeh M. Poly (d/l) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors. Mater. Sci. Eng. C. 2017;77:978-89.
  42. Fan W, Dang W, Liu T, Li J, Xue L, Yuan L, et al. Fatigue behavior of the 3D orthogonal carbon/glass fibers hybrid composite under three-point bending load. Materials & Design. 2019;183:108112.
  43. Tavares MR, Menezes LRd, Dutra Filho JC, Cabral LM, Tavares MIB. Surfacecoated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR. Polym. Test. 2017;60:39-48.
  44. Bourmaud A, Mérotte J, Siniscalco D, Le Gall M, Gager V, Le Duigou A, et al. Main criteria of sustainable natural fibre for efficient unidirectional biocomposites. Composites Part A: Applied Science and Manufacturing. 2019;124:105504.