Vol. 35 Núm. 1 (2022): Revista ION
Artículos

Metodología para la simulación numérica de la adición de agentes catalíticos en procesos de inyección de vapor

Luis Miguel Salas-Chia
Universidad Industrial de Santander
Keyner Steven Nuñez Mendez
Universidad Industrial de Santander
Paola Andrea León Naranjo
Universidad Industrial de Santander
Samuel Fernando Muñoz Navarro
Universidad Industrial de Santander
Adan Yovani León Bermúdez
Universidad Industrial de Santander

Publicado 2022-06-03

Palabras clave

  • acuatermólisis,
  • simulación numérica,
  • recobro térmico,
  • catálisis

Cómo citar

Salas-Chia, L. M., Nuñez Mendez, K. S., León Naranjo, P. A. ., Muñoz Navarro, S. F., & León Bermúdez, A. Y. (2022). Metodología para la simulación numérica de la adición de agentes catalíticos en procesos de inyección de vapor. Revista ION, 35(1), 17–32. https://doi.org/10.18273/revion.v35n1-2022002

Resumen

Las reservas de petróleo hoy en día se encuentran integradas en gran medida por aceites pesados y extrapesados, de los cuales se obtienen pequeñas cantidades en su producción primaria. En este tipo de yacimientos la aplicación de métodos de recuperación térmica es una etapa importante en el programa de desarrollo y explotación de los campos. La inyección de vapor es uno de estos métodos empleados con el objetivo principal de reducir la viscosidad del crudo. En la literatura existen investigaciones experimentales las cuales recopilan evidencia de una interacción entre el vapor y el aceite en el yacimiento, permitiendo la aparición de reacciones químicas en un proceso denominado acuatermólisis, esta transformación es un resultado químico que se presenta a temperaturas entre los 200 y 325 °C típicas de la inyección de vapor. La adición del catalizador al proceso posibilita establecer un escenario donde se reduce la energía de activación necesaria generando cambios permanentes en propiedades del crudo, incluso si el calor suministrado se ha dispersado. La representación de este fenómeno mediante simulación numérica de yacimientos constituye un desafío, ya que las reacciones que gobiernan el proceso de cambios fisicoquímicos sobre el crudo presentan incidencias por parte de factores externos los cuales no pueden ser representados de manera directa por los simuladores comerciales. De esta manera, el presente trabajo se enfocó en el análisis de las investigaciones encontradas en la literatura acerca de la representación de los fenómenos fisicoquímicos, con los cuales se generó una metodología para replicar los efectos mediante simulación numérica.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Guo K, Li H, Yu Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel. 2016;185:886-902.
  2. Li Y, Wang Z, Hu Z, Xu B, Li Y, Pu W, et al. A review of in situ upgrading technology for heavy crude oil. Petroleum. 2020;7:117-122.
  3. Dong X, Liu H, Chen Z, Wu K, Lu N, Zhang Q. Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection. Appl. Energy. 2019;239:1190-1211.
  4. Babadagli T. Philosophy of EOR. J. Pet. Sci. Eng. 2020;188:1-24.
  5. Peñuela-Muñoz JH. Crudos pesados Crudos pesados: la realidad del sector hidrocarburos de Colombia. Revista VirtualPro. 2017;184:1-3.
  6. Leon Naranjo PA, Bernal Correa DL, Muñoz Navarro SF, Ordoñez Rodriguez A. Inyección de vapor en medianos. recuperación y rentabilidad. revfue. 2015;13(1):21-3.
  7. Naranjo Suárez C, Muñoz Navarro S, Zapata Arango J. Factibilidad experimental de la inyección de agua en las arenas mugrosa del campo Lisama. revfue. 2010;8(1):5-15.
  8. Zhao DW, Gates ID. On hot water flooding strategies for thin heavy oil reservoirs. Fuel. 2015;153:559-568
  9. Zhong LG, Liu YJ, Fan HF, Jiang SJ. Liaohe Extra-Heavy Crude Oil Underground Aquathermolytic Treatments Using Catalyst and Hydrogen Donors under Steam Injection Conditions. En: SPE International Improved Oil Recovery Conference in Asia Pacific; 2003 oct 20-21; Kuala Lumpur, Malaysia. OnePetro; 2003. p. 6.
  10. Kapadia PR, Kallos MS, Gates ID. A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen. Fuel Process. Technol. 2015;131:270-289.
  11. Jiang S, Liu X, Liu Y, Zhong LG. In Situ Upgrading Heavy Oil by Aquathermolytic Treatment under Steam Injection Conditions. En: SPE International Symposium on Oilfield Chemistry; 2005 feb 2-4; The Woodlands, Texas. OnePetro; 2005. p. 8.
  12. Wen S, Zhao Y, Liu Y, Hu S. A Study on Catalytic Aquathermolysis of Heavy Crude Oil During Steam Stimulation. En: SPE International Symposium on Oilfield Chemistry; 2007 feb 28; Houston, Texas. OnePetro; 2007. p. 1-5.
  13. Chen Y, Wang Y, Wu C, Xia F. Laboratory Experiments and Field Tests of an Amphiphilic Metallic Chelate for Catalytic Aquathermolysis of Heavy Oil. Energy & Fuels. 2008;22:1502-1508.
  14. Wang Y, Chen Y, He J, Li P, Yang C. Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: Fe3+ and Mo6+. Energy & Fuels. 2010;24(3):1502-10.
  15. Chao K, Chen Y, Liu H, Li P, Yang C. Laboratory Experiments and Field Test of a Difunctional Catalyst for Catalytic Aquathermolysis of Heavy Oil. Energy & Fuels. 2012;26:1152-59.
  16. Yi S, Babadagli T, Li HA. Use of Nickel Nanoparticles for Promoting Aquathermolysis Reaction During Cyclic Steam Stimulation. SPE J. 2018;23(1):145-56.
  17. Wu C, Lei G, Yao C, Jia X. In Situ Upgrading Extra-heavy Oil by Catalytic Aquathermolysis Treatment Using a New Catalyst Based Anamphiphilic Molybdenum Chelate. En: International Oil and Gas Conference and Exhibition in China; 2010 jun 8-10; Beijing, China. OnePetro; 2010. p. 9.
  18. Zhang Z, Barrufet M, Lane R, Mamora D. Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst under Steam Injection Condition. En: SPE Heavy Oil Conference Canada; 2012 jun 12-14; Calgary, Alberta, Canada. OnePetro; 2012. p. 1-7.
  19. Wu C, Su J, Zhang R, Zhang Z. Study on the molecular dynamics mechanism of extraheavy oil by catalytic aquathermolysis. Energy Sources, Part A: Recovery, Utilization, and Enviromental Effects. 2016;38(6):763-68.
  20. Hashemi R, Nassar NN, Pereira Almao P. Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: A study of hot fluid flooding for Athabasca bitumen recovery. Energy and Fuels. 2013;27:2194-2201.
  21. Xu Y, Ayala-Orozco C, Wong MS. Heavy Oil Viscosity Reduction Using Iron III para-Toluenesulfonate Hexahydrate. En: SPE Western Regional Meeting; 2018 apr 22-26; Garden Grove, California, USA. OnePetro; 2018.
  22. Bennion DB, Ma T, Thomas FB, Romanova UG. Laboratory Procedures for Optimizing the Recovery from High Temperature Thermal Heavy Oil and Bitumen Recovery Operations. En: Canadian International Petroleum Conference; 2007 jun 12-14; Calgary, Canada. OnePetro; 2007. p. 14.
  23. Li W, Mamora DD. Numerical Simulation of Thermal Solvent Replacing Steam under Steam Assisted Gravity Drainage (SAGD) Process. En: SPE Western Regional Meeting; 2010 may 27-29; Anaheim, California, USA. OnePetro; 20010. p. 1-14.
  24. Rabiu Ado M. Numerical Simulation of Heavy Oil and Bitumen Recovery and Upgrading Techniques (Tesis doctoral). University of Nottingham; 2017.
  25. Bernal Correa DL, Rincon Canas MM, Munoz Navarro SF, Ordonez Rodriguez A, Leon Naranjo PA. Evaluación técnico financiera de la implementación de un proceso de inyección continua de vapor en un yacimiento de crudo medio-caso colombiano (Tesis). Bucaramanga: UIS; 2015.
  26. Suhag A, Ranjith R, Balaji K, Peksaglam Z, Malik V, Zhang M, et al. Optimization of Steamflooding Heavy Oil Reservoirs. En: SPE Western Regional Meeting; 2017 apr 23-27; Bakersfield, California, USA. OnePetro; 2017. p. 1-35.
  27. Butron J, Bryan J, Yu X, Kantzas A. Production of Gases During Thermal Displacement Tests. En: SPE Canada Heavy Oil Technical Conference; 2015 jun 9-11; Calgary, Alberta, Canada. OnePetro; 2015. p. 1-20.
  28. Thimm HF. A general theory of gas production in SAGD operations. Journal of Canadian Petroleum Technology. 2000;40(11):50-53.
  29. Barroux C, Lamoureux-Var V, Flauraud E. Forecasting of H2S Production due to Aquathermolysis Reactions. En: SPE Middle East Oil and Gas Show and Conference; 2013 mar 10-13; Manama, Bahrain. OnePetro; 2013.
  30. Lizcano C. Acid Gas Prediction Methodology, Result of Steam Injection Implementation in Heavy Oil Reservoirs. En: SPE Annual Technical Conference and Exhibition; 2014 oct 27-29; Amsterdam, The Netherlands. OnePetro; 2013.
  31. Belgrave JDM, Moore RG, Ursenbach MG. The Canadian Journal of Chemical Engineering. 1994;72(3):511-16.
  32. Muraza O, Galadima A. Aquathermolysis of heavy oil: A review and perspective on catalyst development. Fuel. 2015;157:219-31.
  33. Hyne JB. Aquathermolysis: A synopsis of work on the chemical reaction between water (steam) and heayy oil sands during simulated steam stimulation. Calgary; 1986.
  34. Tavakkoli Osgouei Y, Parlaktuna M. Effects of minerals on steam distillation during thermal heavy-oil recovery: An experimental investigation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018;40(6):662-72.
  35. Fan H. The effects of reservoir minerals on the composition changes of heavy oil during steam stimulation. Journal of Canadian Petroleum Technology. 2003;42(3):11-14.
  36. Montgomery W, Sephton MA, Watson JS, Zeng H. The effects of minerals on heavy-oil and bitumen chemistry when recovered by steam-assisted methods. Journal of Canadian Petroleum Technology. 2014;54(1):15-17.
  37. Yi S. Use of Nano-Metal Particles for Promoting Aquathermolysis Reaction during Cyclic Steam Stimulation (Tesis de maestría). University of Alberta; 2017.
  38. Hamedi Shokrlu Y, Babadagli T. Kinetics of the In-Situ Upgrading of Heavy Oil by Nickel Nanoparticle Catalysts and Its Effect on CyclicSteam-Stimulation Recovery Factor. SPE Res. Eval. & Eng. 2014;17(3):355-64.
  39. Zou R, Xu J, Kuffner S, Becker J, Li T, Guan X, et al. Spherical poly (vinyl imidazole) brushes loading nickel cations as nanocatalysts for aquathermolysis of heavy crude oil. Energy and Fuels. 2019;32(2):998-1006.
  40. COLCIENCIAS. Technology Readiness Levels - TRL. 2017.
  41. Hassanzadeh H, Galarraga CE, Abedi J, Scott CE, Chen Z, Pereira-Almao P. Modelling of Bitumen Ultradispersed Catalytic Upgrading Experiments in a Batch Reactor. En: Canadian International Petroleum Conference; 2009 Jun 16–18; Calgary, Alberta. OnePetro; 2009. p. 1-5.
  42. Hendraningrat L, Souraki Y, Torsater O. Experimental Investigation of Decalin and Metal Nanoparticles-Assisted Bitumen Upgrading During Catalytic Aquathermolysis. En: SPE/EAGE European Unconventional Resources Conference and Exhibition; 2014 feb 25-27; Vienna, Austria. OnePetro; 2014. p. 11.
  43. Rivera Olvera JN, Gutiérrez GJ, Romero Serrano JA, Medina Ovando A, Garibay Febles V, Barriga Arceo LD. Use of unsupported, mechanically alloyed NiWMoC nanocatalyst to reduce the viscosity of aquathermolysis reaction of heavy oil. Catalysis Communications. 2014;43:131-35.
  44. Hao H, Su H, Chen G, Zhao J, Hong L. Viscosity Reduction of Heavy Oil by Aquathermolysis with Coordination Complex at Low Temperature. The Open Fuels & Energy Science Journal. 2015;8(1):93-98.
  45. Shuwa SM, Al-Hajri RS, Mohsenzadeh A, Al-Waheibi YM, Jibril BY. Heavy Crude Oil Recovery Enhancement and In-Situ Upgrading During Steam Injection Using Ni-Co-Mo Dispersed Catalyst. En: SPE EOR Conference at Oil and Gas West Asia; 2016 Mar 21–23; Muscat, Oman. OnePetro; 2016. p. 1-17.
  46. Kudryashov SI, Afanasiev IS, Petrashov O V, Vakhin AV, Sitnov SA, Akhmadiayrov AA, et al. Catalytic heavy oil upgrading by steam injection with using of transition metals catalysts. OIJ. 2017;8:30-34.
  47. Foss L, Petrukhina N, Kayukova G, Amerkhanov M, Romanov G, Ganeeva Y. Changes in hydrocarbon content of heavy oil during hydrothermal process with nickel, cobalt, and iron carboxylates. Journal of Petroleum Science and Engineering. 2018;169:269-276.
  48. Sitnov SA, Mukhamatdinov II, Vakhin A V, Ivanova AG, Voronina EV. Composition of aquathermolysis catalysts forming in situ from oil-soluble catalyst precursor mixtures. Journal of Petroleum Science and Engineering. 2018;169:44-50.
  49. Chávez Morales SM. Experimental and Numerical Simulation of Combined Enhanced Oil Recovery with In Situ (Tesis de doctorado). University of Calgary; 2016.
  50. Ovalles C, Vallejos C, Vásquez T, Martinis J, Perez-Perez A, Cotte E, et al. Extra-Heavy Crude Oil Downhole Upgrading Process using Hydrogen Donors under Steam Injection Conditions. En: SPE International Thermal Operations and Heavy Oil Symposium; 2001 mar 12-14; Porlamar, Margarita Island, Venezuela. OnePetro; 2001. p. 6.
  51. Ovalles C, Rodríguez H. Extra heavy crude oil downhole upgrading using hydrogen donors under cyclic steam injection conditions: Physical and numerical simulation studies. J Can Pet Technol. 2008;47(1):43-51.
  52. Fan Y, Durlofsky LJ, Tchelepi HA. Numerical Simulation of the In-Situ Upgrading of Oil Shale. SPE J. 2010;15(2):368-81.
  53. Chavez-Morales S, Pereira-Almao P. Experimental and Numerical Simulation of Combined Enhanced Oil Recovery with In Situ Upgrading in a Naturally Fractured Reservoir. En: SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference; 2016 Oct 19–20; Lima, Peru. OnePetro; 2016. p. 1-19.
  54. Huang S, Huang Q, Liu H, Cheng L, Fan Z, Zhao L. A modified model for aquathermolysis and its application in numerical simulation. Fuel. 2017;207:568-78.
  55. Nguyen N, Chen Z, Pereira Almao P, et al. Reservoir Simulation and Production Optimization of Bitumen/Heavy Oil via Nanocatalytic in Situ Upgrading. Ind. Eng. Chem. Res. 2017;56(48):14214-30.
  56. El-Banbi A, Alzahabi A, El-Maraghi A. Introduction. En: PVT Property Correlations - Selection and Estimation. Elsevier; 2018.p. 1-11.
  57. Zapata NB, Morales Mora OA, Mejía Cárdenas JM. Practical kinetic coupling to multicomponent and multi-phase flow transport during in-situ heavy oil upgrading processes using an equation of state-based numerical reservoir simulation. En: SPE Reservoir Characterisation and Simulation Conference and Exhibition; 2019 Sep 17–19; Abu Dhabi, UAE. OnePetro; 2019. p. 1-16.
  58. Bueno N, Mejía JM. Heavy oil in-situ upgrading evaluation by a laboratory-calibrated EoSbased reservoir simulator. Journal of Petroleum Science and Engineering. 2021;196:107455.
  59. Lopez Wills CV. Experimental and Numerical Modelling of Hybrid Steam In-Situ Upgrading Process for Immobile Oil (Tesis de doctorado). University of Calgary; 2020.
  60. Qaiser Muslim AAA-A. Characterization of Petroleum Fractions. Iraqui Journal for mechanical and material engineering. 2009;9(2):223-38.
  61. Ancheyta J. Fundamentals of chemical reaction kinetics. En: Chemical Reaction Kinetics Concepts, Methods and Case Studies. Ciudad de México: John Wiley & Sons; 2017. p. 1-53.
  62. Phillips CR, Haidar NI, Poon YC. Kinetic models for the thermal cracking of Athabasca bitumen. The effect of the sand matrix. Fuel. 1985;64:678-691.
  63. Da Silva De Andrade FJ. Kinetic modeling of catalytic in situ upgrading for Athabasca bitumen, deasphalting pitch and vacuum residue (Tesis de maestría). University of Calgary; 2014.
  64. Fan H, Liu Y, Zhang L, Xiaofei Z. The study on composition changes of heavy oils during steam stimulation processes. Fuel. 2002;81(13):1733-38.
  65. Loria H, Trujillo-Ferrer G, Sosa-Stull C, Pereira-Almao P. Kinetic modeling of bitumen hydroprocessing at in-reservoir conditions employing ultradispersed catalysts. Energy and Fuels. 2011;25:(4)1364-72.