v. 36 n. 2 (2023): Revista ION
Artigos

Adsorção de metais pesados em águas residuais não domésticas utilizando resíduos agro-industriais de banana

Santiago Bedoya Betancur
Politécnico Colombiano Jaime Isaza Cadavid
Erasmo Arriola-Villaseñor
Politécnico Colombiano Jaime Isaza Cadavid
Juan David Valencia Gonzalez
Politécnico Colombiano Jaime Isaza Cadavid
David Alexander Ortiz Muñoz
Politécnico Colombiano Jaime Isaza Cadavid
Rolando Barrera Zapata
Universidad de Antioquia
José Alfredo Hernández
UPIIG del Instituto Politécnico Nacional
Alba Nelly Ardila Arias
Politécnico Colombiano Jaime Isaza Cadavid

Publicado 2023-06-30

Palavras-chave

  • casca de banana,
  • pseudostem de banana,
  • bioadsorvente,
  • águas residuais,
  • galvanoplastia,
  • adsorção
  • ...Mais
    Menos

Como Citar

Bedoya Betancur, S., Arriola-Villaseñor, E., Valencia Gonzalez, J. D. ., Ortiz Muñoz, D. A., Barrera Zapata, R., Hernández, J. A., & Ardila Arias, A. N. (2023). Adsorção de metais pesados em águas residuais não domésticas utilizando resíduos agro-industriais de banana. REVISTA ION, 36(2), 15–32. https://doi.org/10.18273/revion.v36n2-2023002

Resumo

A remoção de metais pesados (Zn, Ni, Fe, Cu e Cr) em águas residuais não domésticas reais (NDWW)
da indústria de electrodeposição (Medellín, Colômbia) foi estudada num sistema descontínuo utilizando biomassa de casca (BCB) e pseudostem de banana (BPT) obtidos por processos físicos simples. Os resultados foram comparados com um carvão activado comercial (CAC). Os adsorventes foram caracterizados através de FTIR, BET, Isoelectric point, Boehm e XRD, mostrando pouca variação em relação aos materiais BCB e BPT em termos de composição química, morfologia e estrutura. As propriedades físico-químicas da ARnD antes do tratamento de adsorção foram também determinadas, encontrando-se uma concentração inicial de 18,73 mg/L, 10,1 mg/L, 11,2 mg/L, 36,7 mg/L e 0,44 mg/L por espectrofotometria de absorção atómica para Zn, Ni, Fe, Cu e Cr, respectivamente. Estes valores foram comparados com a Resolução 0631 de 2015 dos regulamentos colombianos, onde era evidente que excediam os limites máximos admissíveis estabelecidos. Foram efectuados testes de adsorção à temperatura ambiente, pH de 3,65 e 200 rpm variando a quantidade de adsorvente (1 - 5 mg) durante um tempo de 2 horas. As percentagens máximas de remoção foram de 42,69 %, 83,10 %, 95,17 %, 81,90 % e 99,82 % para Fe, Ni, Fe, Cu, Zn e Cr, respectivamente. Observa-se que os valores obtidos com os bioadsorventes são semelhantes aos do carvão vegetal comercial, sugerindo que os resíduos de banana poderiam ser uma alternativa de baixo custo para o tratamento deste tipo de efluente.

Downloads

Não há dados estatísticos.

Referências

  1. Gorokhovsky A, Vikulova M, Escalante-Garcia JI, Tretyachenko E, Burmistrov I, Kuznetsov D, et al. Utilization of nickel-electroplating wastewaters in manufacturing of photocatalysts for water purification. Process Saf. Environ. Prot. 2020;134:208–216. doi.org/10.1016/j.psep.2019.11.040
  2. Pereira FV, Gurgel LVA, Gil LF. Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD). J. Hazard. Mater. 2010;176(1–3):856–863. doi.org/10.1016/j.jhazmat.2009.11.115
  3. Liu H, Ning S, Zhang S, Wang X, Chen L, Fujita T, et al. Preparation of a mesoporous ion-exchange resin for efficient separation of palladium from simulated electroplating wastewater. J. Environ. Chem. Eng. 2022;10(1):106966.
  4. Ali I, Wan P, Raza S, Peng C, Tan X, Sun H, et al. Development of novel MOF-mixed matrix three-dimensional membrane capsules for eradicating potentially toxic metals from water and real electroplating wastewater. Environ. Res. 2022;215(2):113945. doi.org/10.1016/j.envres.2022.113945
  5. Ghorpade A, Ahammed MM. Water treatment sludge for removal of heavy metals from electroplating wastewater. Environ. Eng. Res. 2018;23(1):92–98. doi.org/10.4491/eer.2017.065
  6. Moersidik SS, Nugroho R, Handayani M, Kamilawati, Pratama MA. Optimization and reaction kintics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes. Heliyon. 2020;6(2):e03319. doi.org/10.1016/j.heliyon.2020.e03319
  7. Pooja G, Kumar PS, G. Prasannamedha G, Varjani S, Vo DVN. Sustainable approach on removal of toxic metals from electroplating industrial wastewater using dissolved air flotation. J. Environ. Manage. 2021;295:113147. doi.org/10.1016/j.jenvman.2021.113147
  8. Qu J, Tian X, Jiang Z, Cao B, Akindolie MS, Hu Q, et al. Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwave-functionalized cellulose: Kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. J. Hazard. Mater. 2020;387:121718. doi.org/10.1016/j.jhazmat.2019.121718
  9. Huo Y, Khan A, Liu Y, Wang Z, Yu Y, Sun T, et al. Conversion of Fe-bearing minerals in sludge to nanorod erdite for real electroplating wastewater treatment: Comparative study between ferrihydrite, hematite, magnetite, and troilite. J. Clean. Prod. 2021;298:126826. doi.org/10.1016/j.jclepro.2021.126826
  10. Li M, Hu Y, Zhou N, Wang S, Sun F. Hydrothermal treatment coupled with pyrolysis and calcination for stabilization of electroplating sludge: Speciation transformation and environmental risk of heavy metals. J. Hazard. Mater. 2022;438:129539. doi.org/10.1016/j.jhazmat.2022.129539
  11. Peng G, Deng S, Liu F, Li T, Yu G. Superhigh adsorption of nickel from electroplating wastewater by raw and calcined electroplating sludge waste. J. Clean. Prod. 2020;246:118948. doi.org/10.1016/j.jclepro.2019.118948
  12. Mubarak MF, Zayed AM, Ahmed HA. Activated Carbon/Carborundum@Microcrystalline Cellulose core shell nano-composite: Synthesis, characterization and application for heavy metals adsorption from aqueous solutions. Ind. Crops Prod. 2022;182:114896. doi.org/10.1016/j.indcrop.2022.114896
  13. Bedoya Betancur S, Amar Gil S, Ardila A. AN, Arriola V. E, Barrera Z. R, Hernández JA, et al. Developing bioadsorbents from orange peel waste for treatment of raw textile industry wastewater. Desalin. Water Treat. 2022;250:80–99. doi.org/10.5004/dwt.2022.28185
  14. Nilamsari, Sofyana, Lubis MR, Prilyanti D, Maimun T. Combination of adsorption process using bioadsorbent from coffee ground and ultrafiltration membrane in removing iron and lead content from water. Mater. Today Proc. 2022;63(1):S115–S121. doi.org/10.1016/j.matpr.2022.02.051
  15. Wang Q, Zhou C, Jie Kuang Y, Hui Jiang Z, Yang M. Removal of hexavalent chromium in aquatic solutions by pomelo peel. Water Sci. Eng. 2020;13(1):65–73. doi.org/10.1016/j.wse.2019.12.011
  16. Yu H, Zheng L, Zhang T, Ren J, Chen W, Zhang L, et al. Adsorption Behavior of Cd (II) on TEMPO-oxidized Cellulose in Inorganic/Organic Complex Systems. Environ. Res. 2021;195:110848. doi.org/10.1016/j.envres.2021.110848
  17. Gula A, Ma’amor A, Khaligh NG, Muhd Julkapli N. Recent advancements in the applications of activated carbon for the heavy metals and dyes removal. Chem. Eng. Res. Des. 2022;186:276–299. doi.org/10.1016/j.cherd.2022.07.051
  18. Gupta B, Mishra A, Singh R, Thakur IS. Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent. Environ. Technol. Innov. 2021;21:101278. doi.org/10.1016/j.eti.2020.101278
  19. Zhou Y, Liu Z, Bo A, Tana T, Liu X, Zhao F, et al. Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbent with disulfide (S2-) intercalation. J. Hazard. Mater. 2020;382:121111. doi.org/10.1016/j.jhazmat.2019.121111
  20. Karuppiah T, Uthirakrishnan U, Sivakumar SV, Authilingam S, Arun J, Sivaramakrishnan R, et al. Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production. Int. J. Hydrogen Energy. 2022;47(88): 37569-37576. doi.org/10.1016/j.ijhydene.2021.06.034
  21. Kokate S, Parasuraman K, Prakash H. Adsorptive removal of lead ion from water using banana stem scutcher generated in fiber extraction process. Results Eng. 2022;14:100439. doi.org/10.1016/j.rineng.2022.100439
  22. Ayala-Ruíz N, Malagón-Romero DH, Milquez-Sanabria HA. Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production. J. Clean. Prod. 2022;359:132108. doi.org/10.1016/j.jclepro.2022.132108
  23. Li T, Bian H, Wang W, Fan X, Tao L, Yu G, et al. Removal of low-concentration nickel in electroplating wastewater via incomplete decomplexation by ozonation and subsequent resin adsorption. Chem. Eng. J. 2022;435(1):134923. doi.org/10.1016/j.cej.2022.134923
  24. Skoog DA, Holler FJ, Crouch SR. Principios de análisis instrumental. 6ta ed. México, D.F.: Cengage Learning; 2008.
  25. Rajoria S, Vashishtha M, Sangal VK. Review on the treatment of electroplating industry wastewater by electrochemical methods. Mater. Today Proc. 2021;47(7):1472–1479. doi.org/10.1016/j.matpr.2021.04.165
  26. Bankole MT, Abdulkareem AS, Tijani JO, Ochigbo SS, Afolabi AS, Roos WD. Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents. Water Resour. Ind. 2017;18:33–50. doi.org/10.1016/j.wri.2017.07.001
  27. Cui J, Wang X, Yuan Y, Guo X, Gu X, Jian L. Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater. Chem. Eng. J. 2014;241:184–189. doi.org/10.1016/j.cej.2013.09.003
  28. Bautitz IR Nogueira RFP. Degradation of tetracycline by photo-Fenton process-Solar irradiation and matrix effects. J. Photochem. Photobiol. A Chem. 2007;187(1):33–39. doi.org/10.1016/j.jphotochem.2006.09.009
  29. Ministerio de Ambiente y Desarrollo Sostenible. Resolución 631 del 17 de marzo de 2015: Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. Colombia, Minambiente; 2015.
  30. Patel BY, Patel HK. Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fi ber industry. Heliyon. 2022;8(9):e10652. doi.org/10.1016/j.heliyon.2022.e10652
  31. Pathak PD, Mandavgane SA. Preparation and characterization of raw and carbon from banana peel by microwave activation: Application in citric acid adsorption. J. Environ. Chem. Eng. 2015;3(4A):2435–2447. doi.org/10.1016/j.jece.2015.08.023
  32. Nemaleu JGD, Kaze RC, Tome S, Alomayri T, Assaedi H, Kamseu E, et al. Powdered banana peel in calcined halloysite replacement on the setting times and engineering properties on the geopolymer binders. Constr. Build. Mater. 2021;279:122480. doi.org/10.1016/j.conbuildmat.2021.122480
  33. Anniwaer A, Chaihad N, Zhang M, Wang C, Yu T, Kasai Y, et al. Hydrogen-rich gas production from steam co-gasification of banana peel with agricultural residues and woody biomass. Waste Manag. 2021;125:204–214. doi.org/10.1016/j.wasman.2021.02.042
  34. Chavez-Guerrero L, Vazquez-Rodriguez S, Salinas-Montelongo JA, Roman-Quirino LE, García-Gómez NA. Preparation of all-cellulose composites with optical transparency using the banana pseudostem as a raw material. Cellulose. 2019;26: 3777–3786. doi.org/10.1007/s10570-019-02369-1
  35. Baruah J, Bardhan P, Mukherjee AK, Chandra R, Mandal M, Kalita E. Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. Int. J. Biol. Macromol. 2022;201:298–307. doi.org/10.1016/j.ijbiomac.2021.12.179
  36. Khoshk Rish S, Tahmasebi A, Wang R, Dou J, Yu J. Formation mechanism of nano graphitic structures during microwave catalytic graphitization of activated carbon. Diam. Relat. Mater. 2021;120:108699. doi.org/10.1016/j.diamond.2021.108699
  37. Xie L,Wu Y, Duan X, Li T, Jiang Y. Proteomic and physiological analysis provides an elucidation of Fusarium proliferatum infection causing crown rot on banana fruit. Microbiol. Res. 2022;256:126952. doi.org/10.1016/j.micres.2021.126952
  38. Menéndez JA, Illán-Gómez MJ, León y León CA, Radovic LR. On the difference between the isoelectric point and the point of zero charge of carbons. Carbon. 1995;33(11):1655–1657.
  39. Wu Q, Ren M, Zhan X, Li C, Li T, Yang Z, et al. Comparison of Cd(II) adsorption properties onto cellulose, hemicellulose and lignin extracted from rice bran. LWT. 2021;144:111230. doi.org/10.1016/j.lwt.2021.111230
  40. Hafemann E, Battisti R, Marangoni C, Machado RAF. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydr. Polym. 2019;218:188–198. doi.org/10.1016/j.carbpol.20 19.04.086
  41. Martimiano do Prado T, da Silva Catunda LG, Calegaro ML, Correa DS, Machado SAS. Synthesis and characterization of 2D-carbonylated graphitic carbon nitride: A promising organic semiconductor for miniaturized sensing devices Electrochim. Acta. 2022;431:141094. doi.org/10.1016/j.electacta.2022.141094
  42. Wang W, Li D, Zuo S, Guan Z, Xu H, Ding S, et al. Discarded-leaves derived biochar for highly efficient solar water evaporation and clean water production: The crucial roles of graphitized carbon. Colloids Surfaces A Physicochem. Eng. Asp. 2022;639:128337. doi.org/10.1016/j.colsurfa.2022.128337
  43. Miller J. Estadística para Química Analítica. Segunda ed. Inglaterra, 1993.
  44. S. Hokkanen, A. Bhatnagar A, Srivastava V, Suorsa V, Sillanpää M. Removal of Cd2+, Ni2+ and PO43− from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite. Int. J. Biol. Macromol. 2018;118(A):903–912. doi.org/10.1016/j.ijbiomac.2018.06.095
  45. Santos PF, Neris JB, Luzardo FHM, Velasco FG, Tokumoto MS, Da Cruz RS. Chemical modification of four lignocellulosic materials to improve the Pb2+ and Ni2+ ions adsorption in aqueous solutions. J. Environ. Chem. Eng. 2019;7(5):103363. doi.org/10.1016/j.jece.2019.103363
  46. Ekpete OA, Marcus AC, Osi V. Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca) Fruit Stem. J. Chem. 2017;2017:8635615. doi.org/10.1155/2017/8635615
  47. Zhou N, Chen H, Feng Q, Yao D, Chen H, Wang H, et al. Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean. Prod. 2017;165:221–230. doi.org/10.1016/j.jclepro.2017.07.111
  48. Allwar A. Characteristics of Pore Structures and Surface Chemistry of Activated Carbons by Physisorption, Ftir And Boehm Methods. IOSR J. Appl. Chem. 2012;2(1):09–15. doi.org/10.9790/5736-0210915
  49. Budinova T, Ekinnci E, Yardim F, Grimm A, Björnbom E, Minkova V, et al. Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process. Technol. 2006;87(10):899–905. doi.org/10.1016/j.fuproc.2006.06.005
  50. Mohd Salim R, Khan Chowdhury AJ, Rayathulhan R, Yunus K, Sarkar MZI. Biosorption of Pb and Cu from aqueous solution using banana peel powder. Desalin. Water Treat. 2016;57(1):303–314. doi.org/10.1080/19443994.2015.1091613
  51. Rani K, Gomathi T, Vijayalakshmi K, Saranya M, Sudha PN. Banana fiber Cellulose Nano Crystals grafted with butyl acrylate for heavy metal lead (II) removal. Int. J. Biol. Macromol. 2019;131:461–472. doi.org/10.1016/j.ijbiomac.2019.03.064
  52. Lavanya KM, Florence JAK, Vivekanandan B, Lakshmipathy R. Comparative investigations of raw and alkali metal free banana peel as adsorbent for the removal of Hg2+ ions. Mater. Today. Proc. 2021;55(2):321–326. doi.org/10.1016/j.matpr.2021.07.410
  53. Mautner A, Kwaw Y, Weiland K, Mvubu M, Botha A, John MJ, et al. Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Ind. Crops Prod. 2019;133:325–332. doi.org/10.1016/j.indcrop.2019.03.032
  54. Selimin MA, Latif AFA, Er YC,. Muhamad MS, Basri H. Lee TC. Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal. Mater. Today Proc. 2022;57:1262–1268. doi.org/10.1016/j.matpr.2021.10.502
  55. Darweesh MA, Elgendy MY, Ayad MI, Ahmed AMM, Kamel Elsayed NM, Hammad WA. A unique, inexpensive, and abundantly available adsorbent: composite of synthesized silver nanoparticles (AgNPs) and banana leaves powder (BLP). Heliyon. 2022;8(4):e09279. doi.org/10.1016/j.heliyon.2022.e09279
  56. Selambakkannu S, Othman NAF, Bakar KA, Shukor SA, Karim ZA. A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft banana fiber. Radiat. Phys. Chem. 2018;153:58–69. doi.org/10.1016/j.radphyschem.2018.09.012
  57. Darweesh MA, Elgendy MY, Ayad MI, Ahmed AMM, Elsayed NMK, Hammad WA. Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African J. Chem. Eng. 2022;40:10–20. doi.org/10.1016/j.sajce.2022.01.002
  58. Li Y, Liu J, Yuan Q, Tang H, Yu F, Lv X. A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water. RSC Adv. 2016;6(51):45041–45048. doi.org/10.1039/C6RA07460J
  59. Yasim NSEM, Ismail ZS, Zaki SM, Azis MFA. Adsorption of Cu, As, Pb and Zn by banana trunk. Malaysian J. Anal. Sci. 2016;20(1):187–196.
  60. Ali A, Saeed K, Mabood F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alexandria Eng. J. 2016;55(3):2933–2942. doi.org/10.1016/j.aej.2016.05.011
  61. Van Thuan T, Quynh BTP, Nguyen TD, Ho VTT, Bach LG. Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surfaces and Interfaces. 2017;6:209–217. doi.org/10.1016/j.surfin.2016.10.007
  62. Ajmi RN, Sultan M, Hanno SH. Bioabsorbent of chromium, cadmium and lead from industrial waste water by waste plant. J. Pharm. Sci. Res. 2018;10(3):672–674.
  63. Al-Qahtani KM. Water purification using different waste fruit cortexes for the removal of heavy metals. J. Taibah Univ. Sci. 2016;10(5):700–708. doi.org/10.1016/j.jtusci.2015.09.001
  64. Badessa TS, Wakuma E, Yimer AM. Biosorption for effective removal of chromium(VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP). BMC Chem. 2020;14(1):71. doi.org/10.1186/s13065-020-00724-z
  65. Negroiu M, Turcanu AA, Matei E, Râpă M, Covaliu CI, Predescu AM, et al. Novel adsorbent based on banana peel waste for removal of heavy metal ions from synthetic solutions. Materials (Basel). 2021;14(14):3946. doi.org/10.3390/ma14143946
  66. Xu S, Yu W, Liu S, Xu C, Li J, Zhang Y. Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism. Sustain. 2018;10(11):4250. doi.org/10.3390/su10114250