Aplicação de nanopartículas metálicas como alternativa na Colômbia para o controle do “Mal do Panamá”: revisão
Publicado 2024-05-08
Palavras-chave
- Fusarium oxysporum,
- Mal do Panamá,
- Nanopartículas metálicas
Como Citar
Copyright (c) 2024 Giovanni Alberto Cuervo-Osorio, Diego Alberto Salazar Moncada, Claudia Patricia Ossa Orozco
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Resumo
Panama disease is a disease that affects banana and plantain plantations, caused by the fungus Fusarium oxysporum f. sp. cubense Race 4 Tropical (syn: Fusarium odoratissimum). Currently, it is a problem that has drawn the attention of the agricultural sector in Colombia, as it leads to significant economic losses. The fungus control methods are fungicides of chemical origin, whose components can generate environmental contamination and the fungus resistance of its antifungal action. Another alternative implemented is the use of metallic nanoparticles, which is an innovative approach to this problem. This study focuses on a review of the use of metallic nanoparticles for the control of this phytopathogen, in Colombia and the global scale. A literature search on the topic was conducted, consulting databases such as Scopus, Google Scholar, and SCieLo, looking for articles, patents, books, and other sources. Various studies were identified in which metallic nanoparticles were used to control Fusarium sp. fungi. However, a significant gap was observed both in Colombia and globally regarding studies involving metallic nanoparticles against Fusarium sp. oxysporum cubense Race 4 Tropical, the causative agent of Panama disease.
Downloads
Referências
- Iriarte A, Almeida MG, Villalobos P. Carbon footprint of premium quality export bananas: Case study in Ecuador, the world’s largest exporter. Sci. Total Environ. 2014;472:1082-1088. https://doi.org/10.1016/j. scitotenv.2013.11.072
- Villa-Martínez A, Pérez-Leal R, Morales-Morales HA, Basurto-Sotelo M, Soto-Parra JM, Martínez-Escudero E. Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica. 2015;64(2):194–205. https://doi.org/10.15446/acag.v64n2.43358
- Food and Agriculture Organization of the United Nations. Banana Market review. FAO; 2018.
- Ploetz RC. Panama Disease: A Classic and Destructive Disease of Banana. Agric. Sci. 2000;1(1):1–7. https://doi.org/10.1094/PHP2000-1204-01-HM
- Rodríguez MA. Mal De Panamá: Medidas De Control Y Prevención. Agrocabildo. 2012:2–4.
- Sabadell González S. Etiología y epidemiología ‘falso mal de Panamá’ de la platanera en Canarias (Tesis doctoral). Barcelona, España: Universitat Autònoma de Barcelona; 2003.
- Deacon JW, Herbert JA, Dames J. False Panama disorder of bananas. ITSC Inf. Bull. 1985;149:15–18.
- De Beer Z, Hernández JM, Sabadel S. Enfermedad del falso mal de Panamá en banano. Africa (Lond). 2001;2(9):4–7.
- AgroCabildo. Mal de Panamá: medidas de prevención y control [Online]. 2019. Available: https://www.portalfruticola.com/noticias/2019/07/26/mal-de-panama-medidasde-prevencion-y-control/. Accessed on 19-Aug-2023.
- Latinoamerica. Mal de Panamá asecha a América Latina Plantaciones de banano en alerta [Online]. Available: https://www.croplifela.org/es/plagas/listado-de-plagas/malde-panama. [Accessed: 22-Aug-2023].
- López-Zapata SP, Castaño-Zapata J. Manejo integrado del mal de Panamá [Fusarium oxysporum Schlechtend.: Fr. sp. cubense (E.F. SM.) W.C. Snyder & H.N. Hansen]: una revisión. Rev. U.D.C.A Act. & Div. Cient. 2019;22(2):e1240. https://doi.org/10.31910/rudca.v22.n2.2019.1240
- Vázquez Barajas DA. Estudio de la diversidad molecular de Fusarium oxysporum f. sp. cubense presente en Colombia (Tesis de maestría). Medellin, Colombia: Universidad Nacional de Colombia; 2021.
- Maryani N, Lombard L, Poerba YS, Subandiyah S, Crous PW, Kema GHJ. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Stud. Mycol. 2019;92(1):155-194. https://doi.org/10.1016/j.simyco.2018.06.003
- Fang H, Zhong C, Sun J, Chen H. Revealing the different resistance mechanisms of banana ‘Guijiao 9’ to Fusarium oxysporum f. sp. cubense tropical race 4 using comparative proteomic analysis. J. Proteomics. 2023;283:104937. https://doi.org/10.1016/j.jprot.2023.104937
- Fernandes LB, D’Souza JS, Prasad TSK, Ghag SB. Isolation and characterization of extracellular vesicles from Fusarium oxysporum f. sp. cubense, a banana wilt pathogen. Biochim. Biophys. Acta - Gen. Subj. 2023;1867:130382. https://doi.org/10.1016/j.bbagen.2023.130382
- Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y. Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. J. Hazard. Mater. 2020;388:122063. https://doi.org/10.1016/j.jhazmat.2020.122063
- Yang J, Ren X, Liu M, Fan P, Ruan Y, Zhao Y, et al. Suppressing soil-borne Fusarium pathogens of bananas by planting different cultivars of pineapples, with comparisons of the resulting bacterial and fungal communities. Appl. Soil Ecol. 2022;169:104211. https://doi.org/10.1016/j.apsoil.2021.104211
- Yin Yin M, Si-Jun Z, Siamak SB, Kyaw SO. The antagonistic mechanism of rhizosphere microbes and endophytes on the interaction between banana and Fusarium oxysporum f. sp. cubense. Physiol. Mol. Plant Pathol. 2021;116:101733. https://doi.org/10.1016/j.pmpp.2021.101733
- Tapia C, Amaro J. Género fusarium. Rev. Chil. Infectol. 2014;31(1):85–86. http://doi.org/10.4067/S0716-10182014000100012
- Martínez-Solórzano GE, Rey-Brina JC, Pargas-Pichardo RE, Manzanilla EE. Marchitez por Fusarium raza tropical 4: Estado actual y presencia en el continente americano Agron. Mesoam. 2019;31(1):259-276. https://doi.org/10.15517/am.v31i1.37925
- Congreso de la República de Colombia. Ley 2303 de 2023. Bogotá, Colombia: Suin Juriscol; 2023.
- Bancolombia. Del campo al mundo: El sector agropecuario en Colombia [Online]. Available: https://www.grupobancolombia.com/wps/portal/negocios-pymes/actualizate/sostenibilidad/sector-agropecuario-en-colombia.
- MinAgricultura. En Julio, exportaciones agropecuarias crecieron 3,2% en valor y 9% en volumen [Online]. 2019. Available: https://www.minagricultura.gov.co/noticias/Paginas/-En-Julio,-exportaciones-agropecuarias-crecieron-3,2-en-valor-y-9-en-volumen-.aspx
- Portafolio. Buen balance del país en exportaciones de banano [Online]. 2019. Available: https://www.portafolio.co/economia/buen-balance-del-pais-en-exportaciones-de-banano-531443. [Accessed: 28-Aug-2023].
- Portafolio. Exportación de banano superaría los US$1.000 millones en dos años. 2018.
- Aguirre E. ¿Qué ha pasado en colombia con el hongo fusarium raza 4? [Online] 2020. Available: https://www.agronegocios.co/analisis/emerson-aguirre-3057285/que-hapasado-en-colombia-con-el-hongo-fusariumraza-4-3057215. [Accessed: 09-Oct-2021].
- ICA. Es urgente aumentar la bioseguridad en cada finca para prevenir la dispersion del hongo Fusarium R4T. no. 12;2019.
- Canal RCN. ¿Qué significa la emergencia nacional por hongo que afecta cultivos de banano? [Online] 2019. Available: https://www.noticiasrcn.com/colombia/que-significa-la-emergencia-nacional-por-hongo-que-afectacultivos-de-banano-345571.
- EL HERALDO. Despidos masivos en bananeras guajiras tras emergencia por presencia del hongo R4T [Online]. 2019. Available: https://www.elheraldo.co/la-guajira/despidos-masivos-en-bananeras-guajiras-tras-emergencia-por-presencia-del-hongor4t-656557.
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Fusarium oxysporum f. sp. cubense Raza 4 Tropical - Marchitez por Fusarium. 2023. Available: https://prod.senasica.gob.mx/SIRVEF/ContenidoPublico/Fichas%20tecnicas/Ficha%20T%C3%A9cnica%20Fusariosis%20de%20las%20mus%C3%A1ceas.pdf
- Molano Prieto O.J., Montoya Rios D.P. Análisis de producción, rendimiento y exportación de banano en los principales países afectados por el hongo Fusarium oxysporum F. sp. Cubense (Foc R4T) y recomendaciones para Colombia. 2022.
- Jaramillo J, Rodríguez VP, Guzmán M, Zapata M, Rengifo T. Manual Técnico: Buenas Prácticas Agrícolas (BPA) en la producción de tomate bajo condiciones protegidas. FAO; 2007.
- Sandoval–Chávez RA, Martínez–Peniche RA, Hernández–Iturriaga M, Fernández–Escartín E, Sofía Arvizu–Medrano S, Soto–Muñoz L. Control biológico y químico contra Fusarium stilboides en pimiento morrón (Capsicum annuum L.) en poscosecha. Rev. Chapingo. Ser. Hortic. 2011;17(2):161-172.
- Carmona M, Francisco S. The Problem of Resistance of Fungi To Fungicides. Causes and Effects on Extensive Crops. Agron. y Ambient. 2017;37(1):1–19.
- Castellanos Gonzalez L, Torrado Martínez JM, Céspedes Novoa N. Alternativas biológicas para el control de Fusarium oxysporum en arveja en Pamplona, Norte de Santander. Rev. Investig. Agrar. y Ambient. 2020;12(1):13-28. https://doi.org/10.22490/21456453.3650
- Dawoud TM, Yassin MA, El-Samawaty ARM, Elgorban AM. Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity. Saudi J. Biol. Sci. 2021;28(3):1847-1852. https://doi.org/10.1016/j.sjbs.2020.12.036
- Kaur P, Duhan JS Thakur R. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2018;14:466-471. https://doi.org/10.1016/j.bcab.2018.04.014
- Baker S, Volova T, Prudnikova SV, Satish S, Prasad MN. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology. 2017;53:10-17. https://doi.org/10.1016/j.etap.2017.04.012
- Gopinath V, Velusamy P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2013;106:170-174. https://doi.org/10.1016/j.saa.2012.12.087
- Ngoc-Diep Pham. Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici. Comptes Rendus Chim. 2019;22(11–12):786–793.
- Zanella R. Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo Nano. 2012;5(1):69–81. doi.org/10.22201/ceiich.24485691e.2012.1.45167
- Gómez F. Nanopartículas metálicas y sus aplicaciones. Rev. Digit. innovación y Cienc. 2016:1–11.
- Gómez-Garzón M. Nanomateriales, Nanopartículas y Sintesis verde. Revista Repert. Med. Cir. 2018;27(2):75-80. https://doi.org/10.31260/RepertMedCir.v27.n2.2018.191
- Esquivel-Figueredo R, Mas-Diego SM. Síntesis biológica de nanopartículas de plata: revisión del uso potencial de la especie Trichoderma. Rev. Cuba. Química. 2021;33(2):23-45.
- Fernández Bueno T. Estudio de las aplicaciones biomédicas de las nanopartículas de plata (Tesis de grado). Sevilla, España: Universidad de Sevilla; 2017.
- Rivas Ramírez LK, Torres Pacheco I. Nanopartículas: Nuevas Aliadas De La Agricultura. DC@UAQ. 2021;14(2):19-27.
- Lira-Saldivar RH, Méndez Argüello B, Santos Villarreal GD, Vera Reyes I. Potencial de la nanotecnología en la agricultura. Acta Univ. 2018:28(2):9–24. doi.org/10.15174/au.2018.1575
- Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y. Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. J. Hazard. Mater. 2020;388:122063. doi.org/10.1016/j.jhazmat.2020.122063
- Malandrakis AA, Kavroulakis N, Avramidou M, Papadopoulou KK, Tsaniklidis G, Chrysikopoulos CV. Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the Fusarium solani FsK strain. Sci. Total Environ. 2021;787:147606. doi.org/10.1016/j.scitotenv.2021.147606
- Hermida-Montero LA, Pariona N, Mtz-Enriquez AI, Carrión G, Paraguay-Delgado F, Rosas-Saito G. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J. Hazard. Mater. 2019;380:120850. doi.org/10.1016/j.jhazmat.2019.120850
- Quintero-Quiroz C, Botero LE, Zárate-Triviño D, Acevedo-Yepes N, Saldarriaga Escobar J, Pérez VZ, et al. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater. Res. 2020;24(1):13. https://doi.org/10.1186/s40824-020-00191-6
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016;7:1831. doi.org/10.3389/fmicb.2016.01831
- Barrantes Murillo C, Ortega Oviedo G. Nanopartículas y antibióticos: respuesta a la resistencia global bacteriana. Rev. Cienc. y Salud Integr. Conoc. 2020;4(5):34-43.
- Reyes Rodriguez PY. Síntesis y caracterización de nanopartículas de cobre y óxido de cobre y su incorporación en una matriz polimérica y el estudio de sus propiedades antibacterianas (Tesis de maestria).Saltillo, México: Centro de Investigación en Química Aplicada; 2012.
- Alvarracin M, Cuenca K, Pacheco E. Nanopartículas antimicrobianas en odontologia: Estado del arte. 2021:1–9.
- Vázquez Muñoz R. Evaluación de las interacciones entre las nanopartículas de plata y microorganismos patógenos (Tesis de doctorado). Baja California, México: Centro de Investigación Científica y de Educación Superior de Ensenada; 2017.
- Pal S, Tak KY Song JM. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73 (6):1712–1720. doi:10.1128/AEM.02218-06
- Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials. 2016;6(4):74. https://www.mdpi.com/2079-4991/6/4/74
- Wani IA, Ahmad T. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids Surfaces B: Biointerfaces. 2013;101:162-170. https://doi.org/10.1016/j.colsurfb.2012.06.005
- Pariona N, Paraguay-Delgado F, Basurto-Cereceda S, Morales-Mendoza JE, Hermida-Montero LA, Mtz-Enriquez AI. Shapedependent antifungal activity of ZnO particles against phytopathogenic fungi. Appl. Nanosci. 2020;10:435-443. https://doi.org/10.1007/s13204-019-01127-w
- Ivask A, ElBadaway A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 2014;8(1):374-386. https://doi.org/10.1021/nn4044047
- Susan A, Mansor A, Mahnaz M, Sanaz A. Preparation, Characterization, and Antimicrobial Activities of ZnO Nanoparticles/Cellulose Nanocrystal Nanocomposites. Bioresource. 2013;8(2):1841–1851.
- Shaban AS, Owda ME, Basuoni MM, Mousa MA, Radwan AA, Saleh AK. Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: structure and evaluation of their biological applications. Biomass Conv. Bioref. 2022:1-17. https://doi.org/10.1007/s13399-022-03185-7
- Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem. 2018;8:217-254. https://doi. org/10.1007/s40097-018-0267-4
- Pham ND, Duong MM, Le MV, Hoang HA, Pham LKO. Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsic. Comptes Rendus Chim. 2019;22(11-12):786-793. https://doi.org/10.1016/j.crci.2019.10.007
- López-Luna J, Nopal-Hormiga Y, López-Sánchez L, Mtz-Enriquez AI, Pariona N. Effect of methods application of copper nanoparticles in the growth of avocado plants. Sci. Total Environ. 2023;880:163341. https://doi.org/10.1016/j.scitotenv.2023.163341
- Khalil NM, Abd El-Ghany MN, Rodríguez-Couto S. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 2019;218:477-486. https://doi.org/10.1016/j.chemosphere.2018.11.129
- Rasmiya Begum SL, Jayawardana NU. Green synthesized metal nanoparticles as an ecofriendly measure for plant growth stimulation and disease resistance. Plant Nano Biol. 2023;3:100028. https://doi.org/10.1016/j.plana.2023.100028
- Thakur A, Sharma N, Bhatti M, Sharma M, Trukhanov AV, Trukhanov SV, et al. Synthesis of barium ferrite nanoparticles using rhizome extract of Acorus Calamus: Characterization and its efficacy against different plant phytopathogenic fungi. 2020;24:100599. https://doi.org/10.1016/j.nanoso.2020.100599
- Fujikawa I, Takehara Y, Ota M, Imada K, Sasaki K, Kajihara H, et al. Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. 2021;325:100-108. https://doi.org/10.1016/j.jbiotec.2020.11.012
- Khuda F, Haq ZU, Ilahi I, Ullah R, Khan A, Fouad H, et al. Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. Arab. J. Chem. 2021;14(10)103343. https://doi.org/10.1016/j.arabjc.2021.103343
- Krishnamoorthi R, Bharathakumar S, Malaikozhundan B, Mahalingam PU. Mycofabrication of gold nanoparticles: Optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatal. Agric. Biotechnol. 2021;35:102107. https://doi.org/10.1016/j.bcab.2021.102107
- Villamor Sancho EJ, Impacto medioambiental del uso de nanopartículas (Tesis de grado). Sevilla, España: Universidad de Sevilla.
- Wang P, Lombi E, Menzies NW, Zhao FJ, Kopittke PM. Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. Environ. Sci. Nano. 2018;11:2531-2544.
- Banu AN, Kudesia N, Raut AM, Pakrudheen I, Wahengbam J. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: a review. Environmental Chemistry Letters. 2021;19:4275–4296. https://doi.org/10.1007/s10311-021-01304-w
- Fernandez Lopez G. Bioensayos de acumulación de nanopartículas de plata (Ag NPs) en larvas de dorada (Sparus aurata) (Tesis de grado). Puerto Real, España: Universidad de Cádiz; 2018.
- Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, et al. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. 2020;390:121974. https://doi.org/10.1016/j.jhazmat.2019.121974
- Haddaji C, Ennaciri K, Driouich A, Digua K, Souabi S. Optimization of the coagulation-flocculation process for vegetable oil refinery wastewater using a full factorial design. Process Saf. Environ. Prot. 2022;160:803–816. https://doi.org/10.1016/j.psep.2022.02.068
- McLaughlin M, Pennock D, Rodriguez-Eugenio N. La contaminación del suelo: una realidad oculta. 2019.
- Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018;119(1)157–184. https://doi.org/10.1002/jcb.26234
- Daniela M, Calvopiña A Joel M, Maya M, Andrea G, Parra R. Contaminantes emergentes en aguas y remediación de suelos con nanopartículas. Revista Alianzas y Tendencias BUAP (AyTBUAP). 2021;6(24):50–74. http://doi.org/10.5281/zenodo.5594782
- Hashimoto Y, Takeuchi S, Mitsunobu S, Ok YS. Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag. J. Hazard. Mater. 2017;322(A):318-324. https://doi.org/10.1016/j.jhazmat.2015.09.001
- Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, et al. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. Sci. Total Environ. 2024;912:169331. https://doi.org/10.1016/j.scitotenv.2023.169331
- Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety. 2021;213:112027. https://doi.org/10.1016/j.ecoenv.2021.112027