v. 37 n. 1 (2024): Revista ION
Artigos

Aplicação de nanopartículas metálicas como alternativa na Colômbia para o controle do “Mal do Panamá”: revisão

Giovanni Alberto Cuervo-Osorio
Universidad de Antioquia
Diego Alberto Salazar Moncada
Universidad de Antioquia
Claudia Patricia Ossa Orozco
Universidad de Antioquia

Publicado 2024-05-08

Palavras-chave

  • Fusarium oxysporum,
  • Mal do Panamá,
  • Nanopartículas metálicas

Como Citar

Cuervo-Osorio, G. A., Salazar Moncada, D. A. ., & Ossa Orozco, C. P. (2024). Aplicação de nanopartículas metálicas como alternativa na Colômbia para o controle do “Mal do Panamá”: revisão. REVISTA ION, 37(1), 49–63. https://doi.org/10.18273/revion.v37n1-2024004

Resumo

Panama disease is a disease that affects banana and plantain plantations, caused by the fungus Fusarium oxysporum f. sp. cubense Race 4 Tropical (syn: Fusarium odoratissimum). Currently, it is a problem that has drawn the attention of the agricultural sector in Colombia, as it leads to significant economic losses. The fungus control methods are fungicides of chemical origin, whose components can generate environmental contamination and the fungus resistance of its antifungal action. Another alternative implemented is the use of metallic nanoparticles, which is an innovative approach to this problem. This study focuses on a review of the use of metallic nanoparticles for the control of this phytopathogen, in Colombia and the global scale. A literature search on the topic was conducted, consulting databases such as Scopus, Google Scholar, and SCieLo, looking for articles, patents, books, and other sources. Various studies were identified in which metallic nanoparticles were used to control Fusarium sp. fungi. However, a significant gap was observed both in Colombia and globally regarding studies involving metallic nanoparticles against Fusarium sp. oxysporum cubense Race 4 Tropical, the causative agent of Panama disease.

Downloads

Não há dados estatísticos.

Referências

  1. Iriarte A, Almeida MG, Villalobos P. Carbon footprint of premium quality export bananas: Case study in Ecuador, the world’s largest exporter. Sci. Total Environ. 2014;472:1082-1088. https://doi.org/10.1016/j. scitotenv.2013.11.072
  2. Villa-Martínez A, Pérez-Leal R, Morales-Morales HA, Basurto-Sotelo M, Soto-Parra JM, Martínez-Escudero E. Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica. 2015;64(2):194–205. https://doi.org/10.15446/acag.v64n2.43358
  3. Food and Agriculture Organization of the United Nations. Banana Market review. FAO; 2018.
  4. Ploetz RC. Panama Disease: A Classic and Destructive Disease of Banana. Agric. Sci. 2000;1(1):1–7. https://doi.org/10.1094/PHP2000-1204-01-HM
  5. Rodríguez MA. Mal De Panamá: Medidas De Control Y Prevención. Agrocabildo. 2012:2–4.
  6. Sabadell González S. Etiología y epidemiología ‘falso mal de Panamá’ de la platanera en Canarias (Tesis doctoral). Barcelona, España: Universitat Autònoma de Barcelona; 2003.
  7. Deacon JW, Herbert JA, Dames J. False Panama disorder of bananas. ITSC Inf. Bull. 1985;149:15–18.
  8. De Beer Z, Hernández JM, Sabadel S. Enfermedad del falso mal de Panamá en banano. Africa (Lond). 2001;2(9):4–7.
  9. AgroCabildo. Mal de Panamá: medidas de prevención y control [Online]. 2019. Available: https://www.portalfruticola.com/noticias/2019/07/26/mal-de-panama-medidasde-prevencion-y-control/. Accessed on 19-Aug-2023.
  10. Latinoamerica. Mal de Panamá asecha a América Latina Plantaciones de banano en alerta [Online]. Available: https://www.croplifela.org/es/plagas/listado-de-plagas/malde-panama. [Accessed: 22-Aug-2023].
  11. López-Zapata SP, Castaño-Zapata J. Manejo integrado del mal de Panamá [Fusarium oxysporum Schlechtend.: Fr. sp. cubense (E.F. SM.) W.C. Snyder & H.N. Hansen]: una revisión. Rev. U.D.C.A Act. & Div. Cient. 2019;22(2):e1240. https://doi.org/10.31910/rudca.v22.n2.2019.1240
  12. Vázquez Barajas DA. Estudio de la diversidad molecular de Fusarium oxysporum f. sp. cubense presente en Colombia (Tesis de maestría). Medellin, Colombia: Universidad Nacional de Colombia; 2021.
  13. Maryani N, Lombard L, Poerba YS, Subandiyah S, Crous PW, Kema GHJ. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Stud. Mycol. 2019;92(1):155-194. https://doi.org/10.1016/j.simyco.2018.06.003
  14. Fang H, Zhong C, Sun J, Chen H. Revealing the different resistance mechanisms of banana ‘Guijiao 9’ to Fusarium oxysporum f. sp. cubense tropical race 4 using comparative proteomic analysis. J. Proteomics. 2023;283:104937. https://doi.org/10.1016/j.jprot.2023.104937
  15. Fernandes LB, D’Souza JS, Prasad TSK, Ghag SB. Isolation and characterization of extracellular vesicles from Fusarium oxysporum f. sp. cubense, a banana wilt pathogen. Biochim. Biophys. Acta - Gen. Subj. 2023;1867:130382. https://doi.org/10.1016/j.bbagen.2023.130382
  16. Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y. Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. J. Hazard. Mater. 2020;388:122063. https://doi.org/10.1016/j.jhazmat.2020.122063
  17. Yang J, Ren X, Liu M, Fan P, Ruan Y, Zhao Y, et al. Suppressing soil-borne Fusarium pathogens of bananas by planting different cultivars of pineapples, with comparisons of the resulting bacterial and fungal communities. Appl. Soil Ecol. 2022;169:104211. https://doi.org/10.1016/j.apsoil.2021.104211
  18. Yin Yin M, Si-Jun Z, Siamak SB, Kyaw SO. The antagonistic mechanism of rhizosphere microbes and endophytes on the interaction between banana and Fusarium oxysporum f. sp. cubense. Physiol. Mol. Plant Pathol. 2021;116:101733. https://doi.org/10.1016/j.pmpp.2021.101733
  19. Tapia C, Amaro J. Género fusarium. Rev. Chil. Infectol. 2014;31(1):85–86. http://doi.org/10.4067/S0716-10182014000100012
  20. Martínez-Solórzano GE, Rey-Brina JC, Pargas-Pichardo RE, Manzanilla EE. Marchitez por Fusarium raza tropical 4: Estado actual y presencia en el continente americano Agron. Mesoam. 2019;31(1):259-276. https://doi.org/10.15517/am.v31i1.37925
  21. Congreso de la República de Colombia. Ley 2303 de 2023. Bogotá, Colombia: Suin Juriscol; 2023.
  22. Bancolombia. Del campo al mundo: El sector agropecuario en Colombia [Online]. Available: https://www.grupobancolombia.com/wps/portal/negocios-pymes/actualizate/sostenibilidad/sector-agropecuario-en-colombia.
  23. MinAgricultura. En Julio, exportaciones agropecuarias crecieron 3,2% en valor y 9% en volumen [Online]. 2019. Available: https://www.minagricultura.gov.co/noticias/Paginas/-En-Julio,-exportaciones-agropecuarias-crecieron-3,2-en-valor-y-9-en-volumen-.aspx
  24. Portafolio. Buen balance del país en exportaciones de banano [Online]. 2019. Available: https://www.portafolio.co/economia/buen-balance-del-pais-en-exportaciones-de-banano-531443. [Accessed: 28-Aug-2023].
  25. Portafolio. Exportación de banano superaría los US$1.000 millones en dos años. 2018.
  26. Aguirre E. ¿Qué ha pasado en colombia con el hongo fusarium raza 4? [Online] 2020. Available: https://www.agronegocios.co/analisis/emerson-aguirre-3057285/que-hapasado-en-colombia-con-el-hongo-fusariumraza-4-3057215. [Accessed: 09-Oct-2021].
  27. ICA. Es urgente aumentar la bioseguridad en cada finca para prevenir la dispersion del hongo Fusarium R4T. no. 12;2019.
  28. Canal RCN. ¿Qué significa la emergencia nacional por hongo que afecta cultivos de banano? [Online] 2019. Available: https://www.noticiasrcn.com/colombia/que-significa-la-emergencia-nacional-por-hongo-que-afectacultivos-de-banano-345571.
  29. EL HERALDO. Despidos masivos en bananeras guajiras tras emergencia por presencia del hongo R4T [Online]. 2019. Available: https://www.elheraldo.co/la-guajira/despidos-masivos-en-bananeras-guajiras-tras-emergencia-por-presencia-del-hongor4t-656557.
  30. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Fusarium oxysporum f. sp. cubense Raza 4 Tropical - Marchitez por Fusarium. 2023. Available: https://prod.senasica.gob.mx/SIRVEF/ContenidoPublico/Fichas%20tecnicas/Ficha%20T%C3%A9cnica%20Fusariosis%20de%20las%20mus%C3%A1ceas.pdf
  31. Molano Prieto O.J., Montoya Rios D.P. Análisis de producción, rendimiento y exportación de banano en los principales países afectados por el hongo Fusarium oxysporum F. sp. Cubense (Foc R4T) y recomendaciones para Colombia. 2022.
  32. Jaramillo J, Rodríguez VP, Guzmán M, Zapata M, Rengifo T. Manual Técnico: Buenas Prácticas Agrícolas (BPA) en la producción de tomate bajo condiciones protegidas. FAO; 2007.
  33. Sandoval–Chávez RA, Martínez–Peniche RA, Hernández–Iturriaga M, Fernández–Escartín E, Sofía Arvizu–Medrano S, Soto–Muñoz L. Control biológico y químico contra Fusarium stilboides en pimiento morrón (Capsicum annuum L.) en poscosecha. Rev. Chapingo. Ser. Hortic. 2011;17(2):161-172.
  34. Carmona M, Francisco S. The Problem of Resistance of Fungi To Fungicides. Causes and Effects on Extensive Crops. Agron. y Ambient. 2017;37(1):1–19.
  35. Castellanos Gonzalez L, Torrado Martínez JM, Céspedes Novoa N. Alternativas biológicas para el control de Fusarium oxysporum en arveja en Pamplona, Norte de Santander. Rev. Investig. Agrar. y Ambient. 2020;12(1):13-28. https://doi.org/10.22490/21456453.3650
  36. Dawoud TM, Yassin MA, El-Samawaty ARM, Elgorban AM. Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity. Saudi J. Biol. Sci. 2021;28(3):1847-1852. https://doi.org/10.1016/j.sjbs.2020.12.036
  37. Kaur P, Duhan JS Thakur R. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2018;14:466-471. https://doi.org/10.1016/j.bcab.2018.04.014
  38. Baker S, Volova T, Prudnikova SV, Satish S, Prasad MN. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology. 2017;53:10-17. https://doi.org/10.1016/j.etap.2017.04.012
  39. Gopinath V, Velusamy P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2013;106:170-174. https://doi.org/10.1016/j.saa.2012.12.087
  40. Ngoc-Diep Pham. Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici. Comptes Rendus Chim. 2019;22(11–12):786–793.
  41. Zanella R. Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo Nano. 2012;5(1):69–81. doi.org/10.22201/ceiich.24485691e.2012.1.45167
  42. Gómez F. Nanopartículas metálicas y sus aplicaciones. Rev. Digit. innovación y Cienc. 2016:1–11.
  43. Gómez-Garzón M. Nanomateriales, Nanopartículas y Sintesis verde. Revista Repert. Med. Cir. 2018;27(2):75-80. https://doi.org/10.31260/RepertMedCir.v27.n2.2018.191
  44. Esquivel-Figueredo R, Mas-Diego SM. Síntesis biológica de nanopartículas de plata: revisión del uso potencial de la especie Trichoderma. Rev. Cuba. Química. 2021;33(2):23-45.
  45. Fernández Bueno T. Estudio de las aplicaciones biomédicas de las nanopartículas de plata (Tesis de grado). Sevilla, España: Universidad de Sevilla; 2017.
  46. Rivas Ramírez LK, Torres Pacheco I. Nanopartículas: Nuevas Aliadas De La Agricultura. DC@UAQ. 2021;14(2):19-27.
  47. Lira-Saldivar RH, Méndez Argüello B, Santos Villarreal GD, Vera Reyes I. Potencial de la nanotecnología en la agricultura. Acta Univ. 2018:28(2):9–24. doi.org/10.15174/au.2018.1575
  48. Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y. Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. J. Hazard. Mater. 2020;388:122063. doi.org/10.1016/j.jhazmat.2020.122063
  49. Malandrakis AA, Kavroulakis N, Avramidou M, Papadopoulou KK, Tsaniklidis G, Chrysikopoulos CV. Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the Fusarium solani FsK strain. Sci. Total Environ. 2021;787:147606. doi.org/10.1016/j.scitotenv.2021.147606
  50. Hermida-Montero LA, Pariona N, Mtz-Enriquez AI, Carrión G, Paraguay-Delgado F, Rosas-Saito G. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J. Hazard. Mater. 2019;380:120850. doi.org/10.1016/j.jhazmat.2019.120850
  51. Quintero-Quiroz C, Botero LE, Zárate-Triviño D, Acevedo-Yepes N, Saldarriaga Escobar J, Pérez VZ, et al. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater. Res. 2020;24(1):13. https://doi.org/10.1186/s40824-020-00191-6
  52. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016;7:1831. doi.org/10.3389/fmicb.2016.01831
  53. Barrantes Murillo C, Ortega Oviedo G. Nanopartículas y antibióticos: respuesta a la resistencia global bacteriana. Rev. Cienc. y Salud Integr. Conoc. 2020;4(5):34-43.
  54. Reyes Rodriguez PY. Síntesis y caracterización de nanopartículas de cobre y óxido de cobre y su incorporación en una matriz polimérica y el estudio de sus propiedades antibacterianas (Tesis de maestria).Saltillo, México: Centro de Investigación en Química Aplicada; 2012.
  55. Alvarracin M, Cuenca K, Pacheco E. Nanopartículas antimicrobianas en odontologia: Estado del arte. 2021:1–9.
  56. Vázquez Muñoz R. Evaluación de las interacciones entre las nanopartículas de plata y microorganismos patógenos (Tesis de doctorado). Baja California, México: Centro de Investigación Científica y de Educación Superior de Ensenada; 2017.
  57. Pal S, Tak KY Song JM. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73 (6):1712–1720. doi:10.1128/AEM.02218-06
  58. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials. 2016;6(4):74. https://www.mdpi.com/2079-4991/6/4/74
  59. Wani IA, Ahmad T. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids Surfaces B: Biointerfaces. 2013;101:162-170. https://doi.org/10.1016/j.colsurfb.2012.06.005
  60. Pariona N, Paraguay-Delgado F, Basurto-Cereceda S, Morales-Mendoza JE, Hermida-Montero LA, Mtz-Enriquez AI. Shapedependent antifungal activity of ZnO particles against phytopathogenic fungi. Appl. Nanosci. 2020;10:435-443. https://doi.org/10.1007/s13204-019-01127-w
  61. Ivask A, ElBadaway A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 2014;8(1):374-386. https://doi.org/10.1021/nn4044047
  62. Susan A, Mansor A, Mahnaz M, Sanaz A. Preparation, Characterization, and Antimicrobial Activities of ZnO Nanoparticles/Cellulose Nanocrystal Nanocomposites. Bioresource. 2013;8(2):1841–1851.
  63. Shaban AS, Owda ME, Basuoni MM, Mousa MA, Radwan AA, Saleh AK. Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: structure and evaluation of their biological applications. Biomass Conv. Bioref. 2022:1-17. https://doi.org/10.1007/s13399-022-03185-7
  64. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem. 2018;8:217-254. https://doi. org/10.1007/s40097-018-0267-4
  65. Pham ND, Duong MM, Le MV, Hoang HA, Pham LKO. Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsic. Comptes Rendus Chim. 2019;22(11-12):786-793. https://doi.org/10.1016/j.crci.2019.10.007
  66. López-Luna J, Nopal-Hormiga Y, López-Sánchez L, Mtz-Enriquez AI, Pariona N. Effect of methods application of copper nanoparticles in the growth of avocado plants. Sci. Total Environ. 2023;880:163341. https://doi.org/10.1016/j.scitotenv.2023.163341
  67. Khalil NM, Abd El-Ghany MN, Rodríguez-Couto S. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 2019;218:477-486. https://doi.org/10.1016/j.chemosphere.2018.11.129
  68. Rasmiya Begum SL, Jayawardana NU. Green synthesized metal nanoparticles as an ecofriendly measure for plant growth stimulation and disease resistance. Plant Nano Biol. 2023;3:100028. https://doi.org/10.1016/j.plana.2023.100028
  69. Thakur A, Sharma N, Bhatti M, Sharma M, Trukhanov AV, Trukhanov SV, et al. Synthesis of barium ferrite nanoparticles using rhizome extract of Acorus Calamus: Characterization and its efficacy against different plant phytopathogenic fungi. 2020;24:100599. https://doi.org/10.1016/j.nanoso.2020.100599
  70. Fujikawa I, Takehara Y, Ota M, Imada K, Sasaki K, Kajihara H, et al. Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. 2021;325:100-108. https://doi.org/10.1016/j.jbiotec.2020.11.012
  71. Khuda F, Haq ZU, Ilahi I, Ullah R, Khan A, Fouad H, et al. Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. Arab. J. Chem. 2021;14(10)103343. https://doi.org/10.1016/j.arabjc.2021.103343
  72. Krishnamoorthi R, Bharathakumar S, Malaikozhundan B, Mahalingam PU. Mycofabrication of gold nanoparticles: Optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatal. Agric. Biotechnol. 2021;35:102107. https://doi.org/10.1016/j.bcab.2021.102107
  73. Villamor Sancho EJ, Impacto medioambiental del uso de nanopartículas (Tesis de grado). Sevilla, España: Universidad de Sevilla.
  74. Wang P, Lombi E, Menzies NW, Zhao FJ, Kopittke PM. Engineered silver nanoparticles in terrestrial environments: a meta-analysis shows that the overall environmental risk is small. Environ. Sci. Nano. 2018;11:2531-2544.
  75. Banu AN, Kudesia N, Raut AM, Pakrudheen I, Wahengbam J. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: a review. Environmental Chemistry Letters. 2021;19:4275–4296. https://doi.org/10.1007/s10311-021-01304-w
  76. Fernandez Lopez G. Bioensayos de acumulación de nanopartículas de plata (Ag NPs) en larvas de dorada (Sparus aurata) (Tesis de grado). Puerto Real, España: Universidad de Cádiz; 2018.
  77. Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, et al. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. 2020;390:121974. https://doi.org/10.1016/j.jhazmat.2019.121974
  78. Haddaji C, Ennaciri K, Driouich A, Digua K, Souabi S. Optimization of the coagulation-flocculation process for vegetable oil refinery wastewater using a full factorial design. Process Saf. Environ. Prot. 2022;160:803–816. https://doi.org/10.1016/j.psep.2022.02.068
  79. McLaughlin M, Pennock D, Rodriguez-Eugenio N. La contaminación del suelo: una realidad oculta. 2019.
  80. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018;119(1)157–184. https://doi.org/10.1002/jcb.26234
  81. Daniela M, Calvopiña A Joel M, Maya M, Andrea G, Parra R. Contaminantes emergentes en aguas y remediación de suelos con nanopartículas. Revista Alianzas y Tendencias BUAP (AyTBUAP). 2021;6(24):50–74. http://doi.org/10.5281/zenodo.5594782
  82. Hashimoto Y, Takeuchi S, Mitsunobu S, Ok YS. Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag. J. Hazard. Mater. 2017;322(A):318-324. https://doi.org/10.1016/j.jhazmat.2015.09.001
  83. Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, et al. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. Sci. Total Environ. 2024;912:169331. https://doi.org/10.1016/j.scitotenv.2023.169331
  84. Ameen F, Alsamhary K, Alabdullatif JA, ALNadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety. 2021;213:112027. https://doi.org/10.1016/j.ecoenv.2021.112027