v. 28 n. 2 (2015): Revista ION
Artigos

Adsorção de iões Ni(II) em grânulos de argila bentonita

Carlos Mejía Miranda
Escuela de Ingeniería Química, Grupo de Investigaciones en Corrosión, Universidad Industrial de Santander (UIS)
Biografia
Dionisio Laverde
Escuela de Ingeniería Química, Grupo de Investigaciones en Corrosión, Universidad Industrial de Santander (UIS)
Biografia
Verónica Avella
Escuela de Ingeniería Química, Grupo de Investigaciones en Corrosión, Universidad Industrial de Santander (UIS)
Biografia
Darío Yesid Peña Ballesteros
Escuela de Ingeniería Química, Grupo de Investigaciones en Corrosión, Universidad Industrial de Santander (UIS)
Biografia

Publicado 2015-12-30

Palavras-chave

  • Níquel,
  • Absorção,
  • Bentonite,
  • Argilas,
  • Cinética.

Como Citar

Mejía Miranda, C., Laverde, D., Avella, V., & Peña Ballesteros, D. Y. (2015). Adsorção de iões Ni(II) em grânulos de argila bentonita. REVISTA ION, 28(2). https://doi.org/10.18273/revion.v28n2-2015005

Resumo

A presença de íons metálicos em águas residuais gera um efeito tóxico sobre os ecossistemas marinhos e de saúde pública. Argilas são materiais naturais com alta capacidade de adsorção, de baixo custo, práticas relativas à aplicação em escala industrial para a remoção de íons metálicos. A sua aplicação é limitada para o desenvolvimento de alternativas à utilização de uma destas argilas em processos contínuos em grande escala e. Grânulos de argila podem ser utilizados em colunas de leito fixo. Neste estudo a cinética de adsorção de iões de níquel sobre grânulos de argila bentônicos foi avaliada. Os extrudados foram preparados por molhar a argila com uma solução acidificada com ácido nítrico a 2%v. A proporção da solução aquosa de argila / volume era de 2:1. A remoção de iões de níquel 20, 40, 100 e 160 minutos a temperaturas de 25, 40 e 60 °C, foi avaliada. A cinética de adsorção de Ni (II) a um modelo de pseudo-segunda ordem foi ajustado. As constantes cinéticas do modelo foram 2,792x10-3, 8,085x10-4 e 6,292x10-4 g/mg.min a temperaturas de reacção 25, 45 e 60 °C, respectivamente. A partir do traçado da energia de activação de Arrhenius e a equação factor de frequência para a reacção de iões de níquel de adsorção em argila de bentonite foi determinada como sendo 29,58 kJ/mol e 507,15 g/mg.min, respectivamente. A magnitude da energia de activação indica que o passo de controlo é a adsorção em quimissorção os iões de níquel sobre a superfície da argila.

Downloads

Não há dados estatísticos.

Referências

[1] Kiptoo JK, Ngila JC, Sawula GM. Speciation studies of nickel and chromium in wastewater from an electroplating plant. Talanta. 2004;64:54-9.

[2] Priya PG, Basha CA, Ramamurthi V, Begum SN. Recovery of Nickel (II) Ions from Electroplating Rinse Water Using Hectorite Clay. Modern Applied Science. 2009;3(9):37-51.

[3] Elshazly AH, Konsowa AH. Removal of nickel ions from wastewater using a cation-exchange resin in a batch - stirred tank reactor. Desalination, 2003;158:189-93.

[4] Djomgoue P, Siewe M, Djoufac E, Kenfack P, Njopwouo D. Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution. Appl. Surf. Sci. 2012;258:7470-9.

[5] Kadirvelu K, Thamaraiselvi K. Namasivayam C. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith. Sep. Purif. Technol. 2001;24:497-505.

[6] Malamis S, Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013;252-53:428-61.

[7] Olgun A, Atar N. Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Ind. Eng. Chem. 2012;18:1751-7.

[8] Vengris T, Binkiene R, Sveikauskaite A. B. Nickel, copper and zinc removal from waste water by a modified clay sorbent. Appl. Clay Sci. 2001;18:183-90.

[9] Adebowale KO, Unuabonah EI, Olu-Owolabi BI. Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. Chem. Eng. J. 2008;136:99-107.

[10] Arias F, Sen TK. Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study. Colloid Surface A. 2009;348:100-8.

[11] Sari A, Tuzen M, Citak D, Soylak M. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 2007;149:283-91.

[12] Li W, Tang Y, Zeng Y, Tong Z, Liang D, Cui W. Adsorption behavior of Cr (VI) ions on tannin-immobilized activated clay. Chem. Eng. J. 2012;193-194:88-95.

[13] Bhattacharyya KG, Gupta SS. Removal of Cu (II) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics. Desalination. 2011;272:66-75.

[14] Alabarse FG, Conceicao RV, Balzaretti NM. In-situ FTIR analysis of bentonite under high-pressure. Appl. Clay Sci. 2011;51:202-8.

[15] Mahmood T, Saddique MT, Naeem A, Mustafa S, Zeb N, Shah KH, et al. Kinetic and thermodynamic study of Cd (II), Co (II) and Zn (II) adsorption from aqueous solution by NiO. Chem. Eng. J. 2011;171(3):935-40.

[16] Malkoc E. Ni (II) removal from aqueous solutions using cone biomass of Thuja orientalists. J. Hazard. Mater. 2006;B137:899-908.

[17] Weng CH, Sharma YC, CHU SH. Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials. 2008;155:65–75.

[18] Lin J, Zhan Y, Zhu Z. Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloid Surface A. 2011;384:9-16.

[19] Boparai H.K, Joseph M, O’Carroll D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zero valent iron particles. J. Hazard. Mater. 2011;186:458-65.