v. 28 n. 2 (2015): Revista ION
Artigos

Efeito do sorbitol em relaxação estrutural de filmes de gelatina em estado vítreo

Paulo Díaz-Calderón
Biopolymer Research and Engineering Lab (BiopREL), Escuela de Nutrición y Dietética, Universidad de los Andes. M. Alvaro del Portillo 12.455, Las Condes, Santiago, Chile.
Biografia
Franck Quero
Biopolymer Research and Engineering Lab (BiopREL), Escuela de Nutrición y Dietética, Universidad de los Andes. M. Alvaro del Portillo 12.455, Las Condes, Santiago, Chile.
Biografia
Bill MacNaughtan
Division of Food Sciences, The University of Nottingham. Sutton Bonington Campus, Loughbourough LE12 5RD, Reino Unido.
Biografia
Mina Rousennova
School of Physics. HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue BS8 1TL, Bristol, Reino Unido.
Biografia
Javier Enrione
Biopolymer Research and Engineering Lab (BiopREL), Escuela de Nutrición y Dietética, Universidad de los Andes. M. Alvaro del Portillo 12.455, Las Condes, Santiago, Chile.
Biografia

Publicado 2015-12-30

Palavras-chave

  • Gelatina,
  • Plastificantes,
  • Estado Vítreo,
  • Relaxação Estrutural.

Como Citar

Díaz-Calderón, P., Quero, F., MacNaughtan, B., Rousennova, M., & Enrione, J. (2015). Efeito do sorbitol em relaxação estrutural de filmes de gelatina em estado vítreo. REVISTA ION, 28(2). https://doi.org/10.18273/revion.v28n2-2015008

Resumo

O objetivo deste estudo foi avaliar o efeito do sorbitol sobre a cinética da relaxação estrutural de películas de gelatina armazenadas a temperatura inferior a temperatura de transição vítrea (Tg). Filmes de gelatina bovina e sorbitol foram preparados por moldagem a frio. O sorbitol foi adicionado em fracções de peso (QS), de 0,0, 0,06 e 0,10. Os filmes foram acondicionados em atmosfera de humidade relativa constante (44%), utilizando uma solução saturada de carbonato de potássio, obtendo-se de frações de teor de humidade de peso (Qw) de 0,18, 0,16 e 0,18, respectivamente. A entalpia de relaxação (DH) foi determinada por Calorimetria Diferencial de Varrimento (DSC). As amostras usadas neste estudo apresentaram valores de Tg de 48°C (Qs = 0,0), 35ºC (Qs = 0,06) e 30ºC (Qs = 0,10). Após eliminar historial térmico (30°C a Tg, 15 minutos), as amostras foram armazenadas isotermicamente a 10°C sob Tgonset entre 2 e 80 horas. A adição de sorbitol produziu uma redução significativa (p <0,05) na cinética da relaxação estrutural. A linearização do valor de entalpia de relaxação (DH) versus o logaritmo do tempo de armazenamento apresentou uma redução do declive nas amostras plastificados com sorbitol. A redução da cinética de relaxamento poderia estar relacionada com o efeito de empaquetamiento molecular associado à presença de polióis em matrizes em estado vítreo recentemente relatado pela espectroscopia de positroês (PALS).

Downloads

Não há dados estatísticos.

Referências

[1] Slade L, Levine H. Glass transition and water-food structure interactions. En: Advances in food and nutrition research. Kinsella JE, Editor. Estados Unidos: Academic Press.1995;38:103–269.

[2] Roos YH. Glass transition temperature and its relevance in food processing. Ann. Rev. Food Sci. Technol. 2010;1:469-96.

[3] Roos YH, Karel J. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 1991;56:1676-81.

[4] Roos YH. Phase Transitions in Foods. Estados Unidos: Academic Press Inc; 1995.

[5] Sperling LH. Introduction to Physical Polymer Science. 3 ed. Estados Unidos: Wiley; 1986.

[6] Roos YH, Karel M, Kokini JL. Glass transition in low moisture and frozen foods: effects on shelf life and quality. Food Technol-Chicago. 1996;50:95-108.

[7] Rahman MS. State diagram of foods: its potential use in food processing and product stability. Trends Food Sci. Tech. 2006;17:129-41.

[8] Liu SB, Bhandari B, Zhou W. Glass transition and enthalpy relaxation of amorphous foods saccharides: A review. J. Agric. Food Chem. 2006;54:5701-17.

[9] Le Meste M, Champion D, Roudaut G, Blond G, Simatos D. Glass transition and food technology: A critical appraisal. J. Food Sci. 2002;67:2444-58.

[10] Andreozzi L, Faetti M, Giordano M, Palazzuoli D, Zulli F. Enthalpy Relaxation in Polymers: A Comparison among Different Multiparameter Approaches Extending the TNM/AGV Model. Macromolecules. 2003;36:7379-87.

[11] Andreozzi L, Faetti M, Giordano M, Zulli F. Molecular-Weight Dependence of Enthalpy Relaxation of PMMA. Macromolecules. 2005;38:6056-67.

[12] Ettiene S, Hazeg N, Duval E, Mermet A, Wypych A, David L. Physical aging and molecular mobility of amorphous polymers. J. Non-Cryst. Solids. 2007;353:3871-8.

[13] Berens AR, Hodge IM. Effects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers. 1.Experimental Study on Poly(vinyl chloride). Macromolecules. 1982;15:756-61.

[14] Hutchinson J. Physical Aging of Polymers. Prog. Polym. Sci. 1995;20:703-60.

[15] Perera DY. Physical aging of organic coatings. Prog. Org. Coat. 2003;47:61-76.

[16] Sbovoda R, Pustková P, Málek J. Structural relaxation of polyvinyl acetate (PVAc). Polymer. 2008;49:3176-85.

[17] Chung HJ, Lim S-T. Physical aging of glassy normal and waxy rice starches: thermal and mechanical characterization. Carbohydr. Polym. 2004;57:15-21.

[18] Badii F, Martinet C, Mitchell J, Farhat IA. Enthalpy and mechanical relaxation of glassy gelatin films. Food Hydrocolloid. 2006;20:879-84.

[19] Enrione J, Sáez C, López D, Skurtys O, Acevedo C, Osorio F, et al. Structural relaxation of salmon gelatin films in the glassy state. Food Bioprocess Tech. 2012;5:2446-53.

[20] Lourdin D, Colonna P, Brownse GJ, Noel TR, Ring SG. Structural relaxation and physical ageing of starchy materials. Carbohydr. Res. 2002;337:827-33.

[21] Struik LCE. Physical aging in amorphous polymers and other materials. Holanda: Elsevier; 1978.

[22] Pekarski P, Hampe J, Böhm I, Brion HG, Kirchheim R. Effect of aging and conditioning on diffusion and sorption of small molecules in polymer glasses. Macromolecules. 2000;33:2192-9.

[23] Jin Kim Y, Hagiwara T, Kawai K, Suzuki T, Takai R. Kinetic process of enthalpy relaxation of glassy starch and effect of physical aging upon its water vapor permeability property. Carbohydr. Polym. 2003;53:289-96.

[24] Hu CC, Fu YJ, Hsiao SW, Lee KR, Lai JY. Effect of physical aging on the gas transport properties of poly(methyl methacrylate) membranes. J. Membr. Sci. 2007;303:29-36.

[25] Kilburn D, Claude J, Schweizer T, Alam A, Ubbink J. Carbohydrate polymers in amorphous states: an integrated thermodynamic and nanostructural investigation. Biomacromolecules. 2005;6:864-79.

[26] Townrow S, Roussenova M, Giardello MI, Alam A, Ubbink J. Specific volume - Hole volume correlations in amorphous carbohydrates: effect of temperature, molecular weight and water content. J. Phys. Chem. B. 2010;114:1568-78.

[27] Roussenova M, Murith M, Alam A, Ubbink J. Plasticization, antiplasticization and molecular packing in amorphous carbohydrate-glycerol matrices. Biomacromolecules. 2010;11:3237-47.

[28] Díaz P, Arratia C, Vásquez C, Osorio F, Enrione J. Effect of glycerol on water sorption of bovine gelatin films in the glassy state. Procedia Food Sci. 2011;1:267-74.

[29] Ferry JD. Viscoelastic Properties of Polymers. 2 ed. Estados Unidos: Wiley; 1980.

[30] Lillie MA, Gosline JM. The effect of hydration on the dynamic mechanical properties of elastin. Biopolymers. 1990;29:1147-60.

[31] Harrison STL, Chase HA, Amor SR, Bhonthrone KM, Sanders JKM. Plasticization of poly(hydroxybutyrate) in vivo. Int. J. Biol. Macromol. 1992;14:50-6.

[32] Kilburn D, Claude J, Mezzenga R, Dlubek G, Alam A, Ubbink J. Water in glassy carbohydrates: opening it up at the nanolevel. J. Phys. Chem. B. 2004;108:12436-41.

[33] Townrow S, Kilburn D, Alam A, Ubbink J. Molecular packing in amorphous carbohydrate matrixes. J. Phys. Chem. B. 2007;111:12643-48.

[34] Roussenova M, Enrione J, Díaz-Calderón P, Taylor AJ, Ubbink J, Alam MA. A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents. New J. Phys. 2012;14:35016-36.

[35] Roussenova M, Hughes DJ, Enrione J, Díaz-Calderón P, Sivaniah E, Song Q, et al. Free volume, molecular mobility and polymer structure: Towards the rational design of multi-functional materials. Acta Phys. Pol. A. 2014;125:801-5.

[36] Roussenova M, Enrione J, Díaz-Calderón P, Taylor AJ, Ubbink J, Alam MA. Effect of polyol on the molecular organization and thermodynamic properties of low water content gelatin oligomers. Polymer. 2014;55(26):6827-36.

[37] Enrione J, Hill S, Mitchell J. Sorption and diffusional studies of extruded waxy maize starch-glycerol systems. Starch/Stärke. 2007;59:1-9.

[38] Enrione J, Hill S, Mitchell J. Sorption behaviour of mixtures of glycerol and starch. J. Agric. Food Chem. 2007;55:2956-63.

[39] Ubbink J, Giardello MI, Limbach HJ. Sorption of water by mixtures of carbohydrates in glassy and rubbery states. Biomacromolecules. 2007;8:2862-73.

[40] Talja RA, Helén H, Roos YH, Jouppila K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 2007;67:288-95.

[41] Surana R, Pyne A, Suryanarayanan R. Effect of aging on the physical properties of amorphous trehalose. Pharm. Res. 2004;21:867-74.

[42] Badii F, MacNaughtan W, Farhat IA. Enthalpy relaxation of gelatin in the glassy state. Int. J. Biol. Macromol. 2005;36:263-9.

[43] Tao SJ. Positron annihilation in molecular substances. J. Chem. Phys. 1972;56:5499-510.

[44] Eldrup M, Lightbody D, Sherwood JN. The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981;63:51-8.

[45] Lourdin D, Coignard H, Bizot H, Colonna P. Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer. 1997;38:5401-6.

[46] Arvannitoyanis I, Psomiadou E, Nakayama A, Aiba S, Yamamoto N. Edible films made from gelatin, soluble starch and polyols, Part 3. Food Chem. 1997;60:593-604.

[47] Pouplin M, Redl A, Gontard N. Glass Transition of Wheat Gluten Plasticized with Water, Glycerol or Sorbitol. J. Agric. Food Chem. 1999;47:538-43.

[48] Cao N, Yang Y, Fu Y. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloid. 2009;23:729-35.

[49] Badii F. Stability of proteins in the glassy state. Nottingham, Reino Unido: The University of Nottingham; 2005.

[50] Roussenova M. Molecular organisation and mobility in glass forming systems - A free volume perspective (tesis doctoral). Bristol, Reino Unido: University of Bristol; 2011.

[51] Vrentas JS, Duda JL. Diffusion in Polymer-Solvent Systems. I. Re-examination of the Free-Volume Theory. J. Polym. Sci. 1977;15:403-16.

[52] Cohen MH, Grest GS. Liquid-glass transition, a free volume approach. Phys. Rev. B. 1979;20:1077-98.