Estimação Robusta para um CSTR Usando uma Ordem Elevada Modo Deslizante Observador e um Estimador Baseado em Observador
Publicado 2016-12-15
Palavras-chave
- Observadores do Processo Químico,
- Projeto Observadores Robustos,
- Modos Deslizantes Algoritmos,
- Sistemas com a Incerteza.
Como Citar
Resumo
Este trabalho apresenta uma estrutura de estimativa para um reator de tanque agitado continuamente, que é composta por um estimador baseado em observador deslizante de modo acoplado com um alto ordem modo deslizante observador. Todo o esquema permite a estimativa robusta do estado e alguns parâmetros, a saber, a concentração da massa de reação, o calor da reação e o coeficiente de transferência total de calor, a partir da medição da temperatura no interior do reator e da jaqueta. Para verificar os resultados, as evidências de convergência da estrutura proposta são feitas, e simulações numéricas são apresentadas com medidas ruidosas e sem ruído, o que sugere a aplicação da abordagem proposta.
Downloads
Referências
[2] Utkin VI. Sliding Modes in Control and Optimization. SciencesNew York. 1992. 286 p.
[3] Drakunov SV. Sliding-mode observers based on equivalent control method. [1992] Proc 31st IEEE Conf Decis Control. 1992;
[4] Spurgeon SK. Sliding mode observers: a survey. Int J Syst Sci. 2008;39:751–64.
[5] Drakunov SV, Utkin VI. Sliding mode control in dynamic systems. International Journal of Control. 1992. p. 1029–37.
[6] Drakunov S, Utkin V. Sliding mode observers. Tutorial. Proc 1995 34th IEEE Conf Decis Control. 1995;4.
[7] Cruz-Zavala E, Moreno JA, Fridman L. Uniform Second-Order Sliding Mode Observer for mechanical systems. Proceedings of the 2010 11th International Workshop on Variable Structure Systems, VSS 2010. 2010. p. 14–9.
[8] Polyakov A. Fixed-time stabilization of linear systems via sliding mode control. 2012 12th Int Work Var Struct Syst. 2012;1–6.
[9] Boukhobza T, Barbot J-P. High order sliding modes observer. Decision and Control, 1998. Proceedings of the 37th IEEE Conference on. 1998. p. 1912–7 vol.2.
[10] Angulo MT, Moreno JA, Fridman L. Some remarks about the tradeoffs between exactness and robustness in control. Proceedings of IEEE International Workshop on Variable Structure Systems. 2012. p. 82–7.
[11] Barbot J, Djemai M, Boukhobza TT. Sliding Mode Control In Engineering. Marcel Dekker. 2002.
[12] Utkin VI, Guldner J, Shi J. Sliding Mode Control in Electro-Mechanical Systems. Second Edi. (Automation and Control Engineering), editor. 2009.
[13] Levant A. Sliding order and sliding accuracy in sliding mode control. Int J Control. 1993;58(6):1247–63.
[14] Slotine J-JESJ-JE, Hedrick JKHJK, Misawa EAMEA. Nonlinear state estimation using sliding observers. 1986 25th IEEE Conf Decis Control. 1986;25.
[15] Drakunov SV. An adaptive quasioptimal filter with discontinuous parameter. Autom Remote Control. 1983;44:1167–75.
[16] Wang GB, Peng SS, Huang HP. A sliding observer for nonlinear process control. Chem Eng Sci. 1997;52(5):787–805.
[17] Drakunov SV, Law VJ. Parameter Estimation Using Sliding Mode Observers: Application to the Monod Kinetic Model. Chem Prod Process Model. 2007;2(3).
[18] Martínez-Guerra R, Aguilar R, Poznyak A. A new robust sliding-mode observer design for monitoring in chemical reactors. J Dyn Syst Meas Control. 2004;126:473–8.
[19] Sbarciog M, Moreno JA, Vande Wouwer A. Application of super-twisting observers to the estimation of state and unknown inputs in an anaerobic digestion system. Water Sci Technol. 2014;69:414–21.
[20] Botero H, Álvarez H. Non Linear State and Parameters Estimation in Chemical Processes: Analysis and Improvement of Three Estimation Structures Applied to a CSTR. International Journal of Chemical Reactor Engineering. 2011.
[21] Osorio BG, Castro HB, Torres JDS. State and unknown input estimation in a CSTR using higher-order sliding mode observer. 2011 IEEE 9th Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, LARC 2011 - Conference Proceedings. 2011.
[22] Fridman L, Shtessel Y, Edwards C, Yan XG. Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int J Robust Nonlinear Control. 2008;18:399–412.
[23] Levant A. Robust exact differentiation via sliding mode technique. Automatica. 1998. p. 379–84.
[24] Bequette BW. Behavior of a CSTR with a recirculating jacket heat transfer system. Proc 2002 Am Control Conf (IEEE Cat NoCH37301). 2002;4.
[25] Poling B, Prausnitz J, O’Connell J. The Properties of Gases and Liquids. McGrawHill; 2001.
[26] Oliveira R, Ferreira EC, Feyo de Azevedo S. Stability, dynamics of convergence and tuning of observer-based kinetics estimators. J Process Control. 2002;12(2):311–23.