v. 30 n. 1 (2017): Revista ION
Artigo de investigação científica e/ou tecnológica

Efeito da especiação química de carbonato sobre na corrosão de fendas de superliga de níquel

Mauricio Rincón Ortiz
Universidad Industrial de Santander
Martín Alejandro Rodríguez
Comisión Nacional de Energía Atómica, Instituto Sabato
Ricardo Mario Carranza
Comisión Nacional de Energía Atómica, Instituto Sabato

Publicado 2017-06-30

Palavras-chave

  • Liga 22,
  • Corrosão de fendas,
  • especiação química de carbonato,
  • cloruros,
  • potencial de passivação,
  • PD-GS-PD
  • ...Mais
    Menos

Como Citar

Rincón Ortiz, M., Rodríguez, M. A., & Carranza, R. M. (2017). Efeito da especiação química de carbonato sobre na corrosão de fendas de superliga de níquel. REVISTA ION, 30(1), 7–19. Recuperado de https://revistas.uis.edu.co/index.php/revistaion/article/view/6592

Resumo

Neste trabalho foram estudados os efeitos de inibição da corrosão de fendas de superliga de níquel em soluções clorídricas 22 a partir do emprego de espécies químicas de carbonato. Técnicas como Curvas de Polarização Anódicas e Potenciodinâmicas-Galvanostáticas-Potenciodinâmicas (PD-GS-PD) espectroscopia de impedância eletroquímica e Microscopia Eletrônica de Varredura (MEV) foram usadas para determinar o comportamento passivo da liga em presença das espécies de carbonato. Os resultados indicaram que o ácido carbônico e o bicarbonato não apresentaram efeitos inibitórios nas condições estudadas. O carbonato apresentou razão molar crítica igual a R =[CO=3]/[Cl-] = 1 independente da concentração de cloreto. A presença de um pico anódico foi relacionada à concentração de carbonato. As velocidades de corrosão obtidas foram inferiores a 0,4μm/ano a 24h de imersão.

Downloads

Não há dados estatísticos.

Referências

[1] Mishra AK, Shoesmith DW. Effect of Alloying Elements on Crevice Corrosion Inhibition of Nickel-Chromium-Molydenum-Tungsten Alloys Under Aggressive Conditions: An Electrochemical Study. Corrosion. 2014;70(7):721-30.

[2] Szklarska-Smialowska Z. Pitting and crevice corrosion, NACE Intl, Houston, TX, USA 2005.

[3] Rebak RB. Materials science and technology. A comprehensive treatment. Corrosion and environmental degradation, Vol. II pp. 69-111, Vol. Ed. M. Schuntze, Wiley, VCH, Weinheim, Germany; 2000.

[4] Agarwal DC, Sridhar N. Nickel and Nickel alloys, in: Uhlig ́s Corrosion Handbook, John Wiley & Sons Inc., 2011, 837-52.

[5] Rebak RB, Estill JC. Review of Corrosion Modes For Alloy 22 Regarding Lifetime Expectancy of Nuclear Waste Containers. MRS Proceedings. 2002;757:721.

[6] Kehler BA, Ilevbare GO, Scully JC. Crevice Corrosion Stabilization and Repassivation Behavior of Alloy 625 and Alloy 22.Corrosion. 2001;57:1042-65.

[7] Dunn DS, Pan YM, Chiang KT, Cragnolino GA, He X. The Localized Corrosion Resistance and Mechanical Properties of Alloy 22 Waste Package Outer Container. JOM. 2005;57:49-55.

[8] Ilevbare GO, Effect of Sulfate on the Passive and Crevice Corrosion Properties of Alloy 22 in 4M Sodium Chloride.corros sci. 2006;62:340-56.

[9] Lu BT, Song F, Gao M, Elboujdaini M. Crack growth model for pipelines exposed to concentrated Carbonate-bicarbonate solution with high pH. Corrosion Science. 2010;52:4064-72.

[10] Li MC, Cheng YF. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochem. Acta. 2008;53(6):2831-6.

[11] Li DG, Feng YR, Bai ZQ, Zhu JW, Zheng MS. Influence of temperature Chloride ions and Chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution, Electrochem. Acta. 2007;52(28):7877-84.

[12] Gordon GM. F.N Speller Award Lecture: Corrosion Considerations Related to Permanent Disposal of HigH-Level Radioactive waste. Corrosion. 2002;58(10):811

[13] Annual book of ASTM Standards, Vol. 03.02, Corrosion of Metals; Wear and Erosion, ASTM International, West Conshohocken, PA, USA, 2005.

[14] Shan X, Payer JH. Effect of Polymer and Ceramic Crevice Formers on the Crevice Corrosion of Ni-Cr-Mo Alloy 22. Corrosion. 2010;66:105005-105005-14.

[15] Giordano CM, Rincón Ortíz M, Rodriguez MA, Carranza RM, Rebak RB. Crevice corrosión testing methods for measuring repassivation potential of alloy 22, Corrosion Engineering, Science and Technology. 2011; 46:129-33.

[16] Mishra AK, Frankel GS. Crevice Corrosion Repassivation of Alloy 22 in Aggressive Environments, Corrosion. 2008;64(11):836-44.

[17] Skoog y West. Fundamentos de Química Analítica. Editorial Reverté. Tomo I, II. España 1981.

[18] Allison Geoscience Consultants, Inc., and Hydrogeologic, Inc. MINTEQA2 for Windows Equilibrium Speciation Model, Version 1.5, User’s Manual, Flowey Branch, Georgia, 2003.

[19] Shukla PK, Dunn DS, Chuang KT, Pensado O. Stress Corrosion Model For Alloy 22 In The Potential Yucca Mountain Repository Enviroment, Paper 06502, Corrosion/06 NACE Intl. Houston, TX, 2006.

[20] Fontana MG, Staehle RW. Advances in Corrosion Science and Technology. Vol. VI. New York, United States: Plenum Press; 1976.

[21] Designation ASTM. Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements. Annual Book of ASTM Standards. ASTM International Conshohocken, Pa, USA, 1999.

[22] Rodríguez MA. Cinética de corrosión de la aleación Ni-22Cr-13Mo-3W como material estructural de contenedores de residuos radiactivos nucleares de alta actividad. (Tesis de Maestría). San Martín, Argentina: Universidad Nacional de General San Martín; 2004.

[23] Zadorozne NS, Giordano MC, Rebak RB, Ares AE, Carraza Ricardo RM. Anodic Behavior of Alloy 22 in Bicarbonate Media: Effect of Allloying. Procedia Materials Science. 2015;8:510-8.

[24] Zadorozne NS., Rodríguez MA., Meck NS, Carranza RM. Rebak RB. Corrosion resistance of Ni-Cr-Mo alloys in different metallurgical conditions. Paper 10236, corrosion/2010. NACE Intl. Houston, TX, 2010.

[25] Pourbaix M. Atlas of Electrochemical equilibria in aqueous solutions. NACE Intl, 1974.

[26] Miyagusuku M, Devine TM. In situ Investigation of the passivation of alloy C-22 and the passive film formed on alloy C-22 in acidic electrolytes at room temperature and at 90ºC. Paper 07586. Corrosion NACE, 2007.

[27] Waste Package Material Performance Peer Review Panel, Las Vegas, Nevada, United States Deparment of energy, 2002.

[28] Rebak RB. Factors affecting the crevice corrosion susceptibility of Alloy 22, Paper Nº05610, Corrosion/05, NACE Intl. Houston, TX, 2005.

[29] Rodriguez MA. Inhibition of localized corrosion in chromium containing stainless alloys. Corrosion Reviews. 2012;30:19-32.