v. 30 n. 2 (2017): Revista ION
Artigos

Síntese e caracterização de sistemas ácidos WO3/ZrO2 e WO3/TiO2 aplicados na hidratação do etileno em etanol

Juan Carlos Salazar
Departamento de Química, Universidad del Valle
Mario A. Llano
Escuela de Ingeniería Química, Universidad del Valle
Julián D. Urresta
Departamento de Física, Universidad del Valle

Publicado 2018-05-06

Palavras-chave

  • etileno,
  • hidratação,
  • tungstênio,
  • catalisadores ácidos

Como Citar

Salazar, J. C., Llano, M. A., & Urresta, J. D. (2018). Síntese e caracterização de sistemas ácidos WO3/ZrO2 e WO3/TiO2 aplicados na hidratação do etileno em etanol. REVISTA ION, 30(2), 43–54. https://doi.org/10.18273/revion.v30n2-2017004

Resumo

Este documento estuda a síntese e caracterização de ácidos dos sistemas obtidos pelo método de impregnação incipiente a partir de uma sal de tungsténio e usando TiO2, ZrO2 e os óxidos metálicos, tais como suportes. Os dois sistemas catalisadores de WO3/ZrO2 e WO3/TiO2 foram preparados com cargas de massa de tungsténio de 10, 30 e 40%. Para os dois tipos de catalisadores sintetizados forão determinadas as densidades superficiais, as transições de fase, a estrutura morfológica e a estabilidade térmica para cada uma das cargas de tungsténio empregue foram determinados. Além disso, a actividade catalítica destes catalisadores foi avaliada na hidratação do etileno em etanol, com uma mistura de fases gasosa e líquida, utilizando uma proporção equimolar de etileno de água a pressões de entre 30 e 40 bar. Os resultados revelaram que os sólidos que mostrarão um melhor desempenho melhor atingindo uma selectividade em relação ao etanol de 98% são aqueles com baixa carga de tungsténio (10% em peso) e a uma pressão de entre 30 e 40 bar.

Downloads

Não há dados estatísticos.

Referências

[1] Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy and Fuels. 2005;19:2098-106.

[2] Bedia J, Barrionuevo, R, Rodriguez-Mirasol J, Cordero T. Ethanol dehydration to ethylene on acid carbon catalysts. Applied Catalysis B: Environmental. 2011;103:302–10.

[3] Däumer D, Seifert M, Reschetilowski W. Durability improvements of H-ZSM-5 zeolite for ethanol conversion after treatment with chelating agents, Microporous and Mesoporous Materials. 2016;219:66-76.

[4] Li X, Iglesia E. Selective catalytic oxidation of ethanol to acetic acid on dispersed Mo-V-Nb mixed oxides. Chemistry European Journal. 2007;13:9324-30.

[5] Miller SA. Ethylene and its industrial derivatives. Ernest Benn Editors; 1969.

[6] Maki Y, Sato K, Isobe A, Iwasa N, Fujita S, Shimokawabe, M, et al. Structures of H3PO4 / SiO2 catalysts and catalytic performance in the hydration of ethene. Applied Catalysis A: General. 1998;170:269–75.

[7] Fougret CM, Atkins MP, Hölderich WF. Influence of the carrier on the catalytic performance of impregnated phosphoric acid in the hydration of ethylene. Applied Catalysis A: General. 1999;181:145–56.

[8] Fougret CM, Hölderich WF. Ethylene hydration over metal phosphates impregnated with phosphoric acid. Applied Catalysis A: General. 2001;207:295–301.

[9] Mace C, Bonilla CF. Conversion of ethylene to ethanol. Chemical Engineering Progress. 1954;50:385–95.

[10] Isobe A, Yabuuchi Y, Iwasa N, Takezawa N. Gas-phase hydration of ethene over Me ( HPO4)2·n H2O (Me=Ge , Zr , Ti , and Sn). Applied Catalysis A: General. 2000;195:395– 401.

[11] Okuhara T. Water-tolerant solid acid catalysts. Chemical Reviews. 2002;102:3641–66.

[12] Haining GJ. Olefin hydration process. European Patent Application 0955284 A1. 1999.

[13] Onfroy T, Clet G, Bukallah S, Visser T, Houalla, M. Acidity of titania-supported tungsten or niobium oxide catalysts: correlation with catalytic activity. Applied Catalysis A: General. 2006;298:80–87.

[14] Frampton OD, Feldman J. Process for Preparing Ethanol. United States Patent 3,678,118. 1972.

[15] Chu W, Echizen T, Kamiya Y, Okuhara T. Gasphase hydration of ethene over tungstena– zirconia. Applied Catalysis A: General. 2004;259:199–205.

[16] Katada N, Iseki Y, Shichi A, Fujita N, Ishino I, Osaki K, et al. Production of ethanol by vapor phase hydration of ethene over tungsta monolayer catalyst loaded on titania. Applied Catalysis A: General. 2008;349:55–61.

[17] Kolodziej R, Dutt S. Improve direct hydration processes. Hydrocarbon Processing. 2001;80:103–110.

[18] Llano-Restrepo M, Muñoz-Muñoz YM. Combined chemical and phase equilibrium for the hydration of ethylene to ethanol calculated by means of the Peng–Robinson–Stryjek–Vera equation of state and the Wong–Sandler mixing rules. Fluid Phase Equilibria. 2011;307:45–57.

[19] Naito N, Katada N, Niwa M. Tungsten oxide monolayer loaded on zirconia: determination of acidity generated on the monolayer. Journal of Physical Chemistry B. 1999;103:7206–13.

[20] Smukala J, Span R, Wagner W. New equation of state for ethylene covering the fluid region for temperatures from the melting line to 450K at pressures up to 300 MPa. Journal of Physical and Chemical Reference Data. 2000;29:1053121.

[21] Regalbuto J. in Catalyst Preparation: Science and Engineering. Ed. CRC Press; 2007.

[22] Wachs IE, Kim T, Ross EI. Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catalisis Today. 2006;116:162–8.

[23] Garrido Pedrosa AM, Souza MJB, Marinkovic BA, Melo DMA, Araujo AS. Structure and properties of bifunctional catalysts based on zirconia modified by tungsten oxide obtained by polymeric precursor method. Applied Catalysis A: General. 2008;342:56–62.

[24] Ushikubo T, Kurashige M, Koyanagi T, Ito H, Watanabe Y. Hydration of ethene over W – P mixed metal oxide catalysts. Catalysis Letters. 2000;69:83–7.

[25] Leghari SAK, Sajjad S, Chen F, Zhang J. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chemical Engineering Journal. 2011;166:906–15.

[26] Vaimakis TC. Thermogravimetry (TG) or Thermogravimetric Analysis (TGA). University of Ioannina; 2013.

[27] Park YM, Chung SH, Eom HJ, Lee JS, Lee KY. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresource Technology. 2010;101:6589–93.

[28] Barton DG, Soled SL, Iglesia E. Solid acid catalysts based on supported tungsten oxides. Topics in Catalysis. 1998;6:87–99.

[29] Klobes P, Meyer K, Munro RG. Porosity and Specific Surface Area Measurements for Solid Materials. (National Institute of Standars and Thecnology, 2006).

[30] Chu W, Echizen T, Kamiya Y, Okuhara T. Gasphase hydration of ethene over tungstena – zirconia. Applied Catalysis A: General. 2004;259:199–205. [31] Weissermel K, Arpe HJ. in Química orgánica industrial, Editorial Reverté; 1981.