v. 31 n. 2 (2018): Revista ION
Artigos

Adsorção de azul de metileno utilizando casca de mandioca (Manihot esculenta) modificada quimicamente com ácido oxálico

Alberto Albis Arrieta
Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
Hellman Llanos Reales
Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
Jeffrey Galeano Gil
Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
Daniela García Moreno
Programa de Ingeniería Química. Universidad del Atlántico. Km 7 vía puerto, Barranquilla, Atlántico, Colo
Portada

Publicado 2019-01-17

Palavras-chave

  • casca de mandioca,
  • azul de metileno,
  • ácido oxálico,
  • adsorção

Como Citar

Albis Arrieta, A., Llanos Reales, H., Galeano Gil, J., & García Moreno, D. (2019). Adsorção de azul de metileno utilizando casca de mandioca (Manihot esculenta) modificada quimicamente com ácido oxálico. REVISTA ION, 31(2). https://doi.org/10.18273/revion.v31n2-2018007

Resumo

Neste estudo foi avaliado o potencial da casca de mandioca (Manihot esculenta) modificada com ácido oxálico para remover soluções aquosas de azul de metileno. Foram determinadas as melhores condições de temperatura (40-60°C), tempo (1-3h) e proporção de massa de ácido oxálico/biomassa (1,5-2) para modificação. Foram obtidos percentagens de remoção de até 99,48% e adsortividade de 24,87 mg/g com casca de mandioca modificada a 50 °C durante duas horas e 1,75 relação ácido oxálico/biomassa. O processo de adsorção foi ajustado ao modelo de isoterma de Freundlich, e a cinética de adsorção a um modelo de pseudo segundo ordem.

Downloads

Não há dados estatísticos.

Referências

[1] Moeller G, Alatorre F. Influencia De Las características hidráulicas y geometrías De Biofiltros Empacados Sobre La Eliminación De Un Colorante Azo. Xv Congreso Nacional De Ingeniería Sanitaria Y Ciencias Ambientales; 2006.

[2] Hameed B, Ahmad A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J. Hazard Mater. 2009;164(2):870-5.

[3] Sohrabi M, Ghavami M. Photocatalytic degradation of direct red 23 dye using UV/TiO 2: effect of operational parameters. J. Hazard Mater. 2008;153(3):1235-9.

[4] Órfão J, Silva A, Pereira J, Barata S, Fonseca I, Faria P, et al. Adsorption of a reactive dye on chemically modified activated carbons—influence of pH. J. Colloid Interface Sci. 2006;296(2):480-9.

[5] Ciardelli G, Corsi L, Marcucci M. Membrane separation for wastewater reuse in the textile industry. Resources, conservation and recycling. 2001;31(2):189-97.

[6] Fan L, Zhou Y, Yang W, Chen G, Yang F. Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments. 2008;76(2):440-6.

[7] Zhu M-X, Lee L, Wang H-H, Wang Z. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard Mater. 2007;149(3):735-41.

[8] O’Connell DW, Birkinshaw C, O’Dwyer TF. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource technology. 2008;99(15):6709-24.

[9] Bhatnagar A, Sillanpää M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem. Eng. J.. 2010;157(2):277-96.

[10] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard Mater. 2010;177(1):70-80.

[11] Al-Anber ZA, Al-Anber MA, Matouq M, Al-Ayed O, Omari NM. Defatted Jojoba for the removal of methylene blue from aqueous solution: Thermodynamic and kinetic studies. Desalination. 2011;276(1):169-74.

[12] Gong R, Zhong K, Hu Y, Chen J, Zhu G. Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw. Journal of Environmental Management. 2008;88(4):875-80.

[13] Kumar KV, Kumaran A. Removal of methylene blue by mango seed kernel powder. Biochem. Eng. J. 2005;27(1):83-93.

[14] Bulut Y, Aydın H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006;194(1-3):259-67.

[15] Chen L, Ramadan A, Lü L, Shao W, Luo F, Chen J. Biosorption of methylene blue from aqueous solution using lawny grass modified with citric acid. J. Chem. Eng. Data. 2011;56(8):3392-9.

[16] Sudaryanto Y, Hartono S, Irawaty W, Hindarso H, Ismadji S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource technology. 2006;97(5):734-9.

[17] Marsh H, Reinoso FR. Activated carbon: Elsevier; 2006.

[18] Acosta Arguello HA, Barraza Yance CA, Albis Arrieta AR. Adsorption of chromium (VI) using cassava peel (Manihot esculenta) as biosorbent: A kinetic study. Ingeniería y Desarrollo. 2017;35(1):58-76.

[19] Albis A, Martínez JE, Santiago PJ. Remoción de zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): experimentos en columna. Prospectiva. 2017;15(1):16-28.

[20] Albis AR, Cajar LV, Domínguez MI. Análisis cinético de la adsorción de Cr (VI) en soluciones acuosas a concentraciones de 10-20 mg/L con el uso de cáscara de yuca amarga (Manihot esculenta). Prospectiva. 2015;13(2):64-71.

[21] Wu HY, Shieh FK, Kao HM, Chen YW, Deka JR, Liao SH, et al. Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids. Chemistry-A European Journal. 2013;19(20):6358-67.

[22] Lee S-M, Ong S-T. Oxalic acid modified rice hull as a sorbent for methylene blue removal. APCBEE Procedia. 2014;9:165-9.

[23] Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002;40(2):145-9.

[24] Ahmad A, Rafatullah M, Sulaiman O, Ibrahim M, Hashim R. Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. Journal of Hazardous Materials. 2009;170(1):357-65.

[25] Leyva‐Ramos R, Geankoplis C. Diffusion in liquid‐filled pores of activated carbon. I. Pore volume diffusion. The Canadian Journal of Chemical Engineering. 1994;72(2):262-71.

[26] Freundlich H. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie. 1907;57(1):385-470.

[27] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society. 1916;38(11):2221-95.

[28] Menzinger M, Wolfgang R. The meaning and use of the Arrhenius activation energy. Angewandte Chemie International Edition. 1969;8(6):438-44.

[29] Albis Arrieta AR, Martínez J, Santiago P. Remoción de Zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna/Removal of zinc (II) from aqueous solutions using cassava peel (Manihot esculenta): column experiments. Prospectiva. 2017;15(1):16-28.

[30] Yu J, Tong M, Sun X, Li B. A simple method to prepare poly (amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochemical Engineering Journal. 2007;33(2):126-33.

[31] Franz M, Arafat HA, Pinto NG. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon. 2000;38(13):1807-19.

[32] Iqbal M, Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd 2+ and Pb 2+ removal by mango peel waste. Journal of Hazardous Materials. 2009;164(1):161-71.

[33] Zhu F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate polymers. 2015;122:456-80.

[34] Owamah HI, Izinyon OC, Asiagwu AK. Sorption Model and Kinetic Assessment of Ultramarine Blue Removal using Modified Cassava Peels Biomass. Journal Civil Environ Eng. 2012;2:121.

[35] Castellar G, Angulo E, Zambrano A, Charris D. Equilibrio de adsorción del colorante azul de metileno sobre carbón activado. Revista UDCA Actualidad & Divulgación Científica. 2013;16(1):263-71.

[36] Guo J-Z, Li B, Liu L, Lv K. Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere. 2014;111:225-31.