v. 32 n. 2 (2019): Revista ION
Artigos

Avaliação de proteínas hidrolisadas de soro como fonte de nitrogênio na fermentação láctica de lactose

Paula Andrea Duarte-Manchego
Universidad Industrial de Santander
Juan Carlos González-Téllez
Universidad Industrial de Santander
Carlos Jesús Muvdi Nova
Universidad Industrial de Santander

Publicado 2019-11-12

Palavras-chave

  • Hidrolisados,
  • Proteína do Soro do Leite,
  • Fermentação,
  • Lactobacillus Casei ATCC 393,
  • Ácido Lático,
  • Extrato de Levedura.
  • ...Mais
    Menos

Como Citar

Duarte-Manchego, P. A., González-Téllez, J. C., & Muvdi Nova, C. J. (2019). Avaliação de proteínas hidrolisadas de soro como fonte de nitrogênio na fermentação láctica de lactose. REVISTA ION, 32(2), 15–27. https://doi.org/10.18273/revion.v32n2-2019002

Resumo

Uma estratégia para a utilização e valorização das proteínas do soro resultantes do processo de obtenção de coalhada a partir do leite ácido foi avaliada. Os estágios de precipitação (desnaturação térmica e ácida) e hidrólise enzimática são propostos, para sua posterior utilização como fonte de nitrogênio na fermentação de lactose para a produção de ácido lático e lactato. Se realizaram testes para diferentes pH e T na hidrólise, encontrando pH 10 e 60 ° C, um tamanho molecular de menos do que hidrolisados ​​6,5kDa. Estes hidrolisados ​​obtidos foram utilizados na fermentação láctica de lactose com Lactobacillus casei ATCC 393, em concentrações de 1% w / w e 7% w / w de extracto de levedura e 1% w / w foi usada como referência. Crescimento microbiano (3,0*109 e 1,7*109 UFC/cm3), rendimento produto / substrato (0,78 e 0,76 g / g) e produtividade (0,41 e 0,30 g /dm3.h) ) foram similares para os meios com extrato de levedura e 1% de hidrolisado, respectivamente, enquanto o hidrolisado de 7% apresentou alguma inibição, o que pode estar relacionado a um alto teor de nitrogênio total no meio e que se refletiu nas  variáveis ​​de resposta mencionadas previamente (5*108 UFC /cm3, 0,53 g / ge 0,18 g /dm3.h). Estes resultados preliminares apontam para o uso potencial deste produto na fermentação láctica.

Downloads

Não há dados estatísticos.

Referências

[1] Hofvendahl K, Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol. 2000;26(2–4):87–107. https://doi.org/10.1016/S0141-0229(99)00155-6(1).

[2] Departamento Administrativo Nacional de Estadística (DANE) (2012-2015). Encuesta Anual Manufacturera (EAM). Bogotá, Colombia; 2019.

[3] Garcia CA, Arrázola Paternina G, Durango AM. Producción de ácido láctico por vía biotecnológica. Temas Agrarios. 2010;15(2):9-26.

[4] Miller C, Fosmer A, Rush B, McMullin T, Beacom D, Suominen P. Industrial Production of Lactic Acid. In: Comprehensive Biotechnology. Second Edition. Netherlands: Elsevier Inc.; 2011. p. 179–88.
https://doi.org/10.1016/B978-0-08-088504-9.00177-X.

[5] Mohseni J, Fazeli M, Lavasani AS. (2016). Effect of various parameters of carbon and nitrogen sources and environmental conditions on the growth of Lactobacillus Casei in the production of lactic acid. Global Journal of Medical Research: L Nutrition & Science. 2016;16(2):67-73.

[6] Amrane A. Batch cultures of supplemented whey permeate using Lactobacillus helveticus: Unstructured model for biomass formation, substrate consumption and lactic acid production. Enzyme and Microbial Technology. 2001;28(9–10):827–34. https://doi.org/10.1016/S0141-0229(01)00341-6.

[7] Serna L, Rodriguez A. Producción biotecnológica de ácido láctico: Estado del arte. Ciencia y Tecnología Alimentaria. 2005;5(1):54–65. https://doi.org/10.1080/11358120509487672.

[8] Panesar PS, Kennedy JF, Knill CJ, Kosseva M. Production of L(+) Lactic Acid using Lactobacillus casei from Whey. Brazilian Archives of Biology and Technology. 2010;53(1):219–26. https://doi.org/10.1590/S1516-89132010000100027.

[9] Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J. The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresource Technology. 2001;78(2):149–53.https://doi.org/10.1016/S0960-8524(01)00009-8.

[10] Morr CV, Ha EYW. Whey protein concentrates and isolates: Processing and functional properties. Critical Reviews in Food Science and Nutrition. 1993;33(6):431–76. https://doi.org/10.1080/10408399309527643.

[11] Velásquez J, Giraldo G, Padilla L, Giraldo Y. Crecimiento de lactobacillus casei ssp casei ATCC 393 en suero clarificado. Biotecnología en el Sector Agropecuario y Agroindustrial. 2015;13(1):19–27.
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612015000100003&lang=pt.

[12] Vázquez Puente F, Villegas Arroyo G, Mosqueda Frías P. Precipitación de proteínas lactoséricas en función de la acidez, temperatura y tiempo, de suero producido en Comonfort, Guanajuato, México. Revista Venezolana de Ciencia y Tecnología de Alimentos. 2010;1(2):157-69.

[13] Coelho M, Silva M, Silva V, De Souza M, Lopes C, Afonso W. Analysis of whey protein hydrolysates: Peptide profile and ACE inhibitory activity. Brazilian Journal of Pharmaceutical Sciences. 2012;48(4):747–57. https://doi.org/10.1590/S1984-82502012000400019.

[14] Shu G, Zhang Q, Chen H, Wan H, Li H. Effect of five proteases including alcalase, flavourzyme, papain, proteinase k and trypsin on antioxidative activities of casein hydrolysate from goat milk. Acta Universitatis Cibiniensis Series E: Food Technology. 2015;19(2):65–74. https://doi.org/10.1515/aucft-2015-0015.

[15] Adler-Nissen J. Enzymic hydrolysis of food proteins. New York, Unites States: Elsevier Applied Science Publishers; 1986.

[16] Spellman D, McEvoy E, O’Cuinn G, FitzGerald RJ. Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal. 2003;13(6):447–53. https://doi.org/10.1016/S0958-6946(03)00053-0.

[17] Ghosh BC, Prasad LN, Saha NP. Enzymatic hydrolysis of whey and its analysis. Journal of Food Science and Technology. 2017;54(6):1476–83. https://doi.org/10.1007/s13197-017-2574-z.

[18] Perea A, Ugalde U, Rodríguez I, Serra JL. Preparation and characterization of whey protein hydrolysates: Applications in industrial whey bioconversion processes. Enzyme and Microbial Technology. 1993;15(5):418–23. https://doi.org/10.1016/0141-0229(93)90129-P.

[19] Galvão CMA, Silva AFS, Custódio MF, Monti R, Giordano RDLC. Controlled hydrolysis of cheese whey proteins using trypsin and α-chymotrypsin. In: Davison BH, McMillan J, Finkelstein M. (eds). Twenty-Second Symposium on Biotechnology for Fuels and Chemicals. United States: Humana Press; 2001. p. 761–776. https://doi.org/10.1385/ABAB:91-93:1-9:761.

[20] Prieto C. Diseño y optimización de un reactor de membrana discontinuo para la hidrólisis enzimática de proteínas. (Tesis de doctorado). Granada, España: Universidad De Granada; 2007.

[21] Zheng H, Shen X, Bu G, Luo Y. Effects of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates prepared by Alcalase. International Dairy Journal. 2008;18(10–11):1028–33. https://doi.org/10.1016/j.idairyj.2008.05.002.

[22] Polaina J, MacCabe AP. Industrial Enzymes: Structure, Function and Applications. The Netherlands: Springer; 2007. https://doi.org/10.1007/1-4020-5377-0.

[23] Castro A. Caracterización del proceso de obtención y separación de ácido láctico a partir de la fermentación de suero lácteo utilizando la tecnología de membranas. México: Universidad Autónoma De Querétaro; 2011.

[24] Ghaly AE, Kamal MA. Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Research. 2004;38:631–44. https://doi.org/10.1016/j.watres.2003.10.019.

[25] Altıok D, Tokatl F, Harsa S. Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology & Biotechnology. 2006;82(May):1115–21. https://doi.org/10.1002/jctb.

[26] Büyükkileci AO, Harsa S. Batch production of L(+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology and Biotechnology. 2004;79(9):1036–40. https://doi.org/10.1002/jctb.1094