Um olhar sobre o desenvolvimento de aditivos para redução da viscosidade e suas aplicações no transporte de petróleo pesado
Publicado 2019-08-30
Palavras-chave
- Aditivo,
- asfaltenos,
- nano-cúmulos,
- viscosidade,
- transporte de cru.
Como Citar
Resumo
A presente revisão considera a problemática que apresentam os crus pesados, devido a sua alta viscosidade, dificultando o seu transporte pela tubulação e sua direita relação com a fracção de asfaltenos, cujo empilhamento gera câmbios na reologia do cru, altas perdas de pressão e maiores requerimentos energéticos no bombeamento, até o tamponamento da tubulação. As pesquisas reportadas têm se direcionado em predizer e elucidar a composição estrutural dos asfaltenos, ressaltando modelos que descrevem aos asfaltenos como sistemas de anéis aromáticos policondensados, que podem-se
unir pelas interações de Van der Waals formando agregados, também como estruturas hierárquicas de sistemas de anéis de hidrocarbonetos aromáticos policíclicos (PAH), que finalizam na formação de clusters. Também se ressalta o modelo termodinâmico coloidal, o qual prediz moléculas de asfaltenos suspensas numa fase liquida, estabilizada pelas resinas adsorvidas na sua superfície.
Uma alternativa para reduzir a viscosidade dos crudes é a inclusão de aditivos, que através de interações moleculares apropriadas geram a dispersão de agregados asfaltênicos, refletidos na diminuição da viscosidade. Para eles, ao projetar aditivos redutores de viscosidade para óleos crus, é importante projetar estruturas moleculares com certos grupos funcionais associados a aminas, amidas, álcoois, ácidos, entre outros, que favoreçam interações que geram dispersão de asfaltenos. Portanto, e a fim de fornecer uma visão ampla desta linha de pesquisa tão extensa, este documento é finalizado com uma revisão de alguns aditivos redutores de viscosidade implementados por diferentes pesquisadores.
Downloads
Referências
[2] Bassane JFP, Sad CMS, Neto DMC, Santos FD, Silva M, Tozzi FC, et al. Study of the effect of temperature and gas condensate addition on the viscosity of heavy oils. J Pet Sci Eng. 2016;142:163-9.
[3] Shokrlu YH, Babadagli T. Viscosity reduction of heavy oil/bitumen using micro- and nanometal particles during aqueous and nonaqueous thermal applications. J Pet Sci Eng. 2014;119:210-20.
[4] Li Y, Gao H, Pu W, Wei B, Chen Y, Li D, et al. Viscosity profile prediction of a heavy crude oil during lifting in twodeep artesian wells. Chinese J Chem Eng. 2017;25:976-82.
[5] Yáñez E, Ramírez A, Uribe A, Castillo E, Faaij A. Unravelling the potential of energy efficiency in the Colombian oil industry. J Clean Prod. 2018;176:604-28.
[6] Alotaibi FM, González-Cortés S, Alotibi MF, Xiao T, Al-megren H, Yang G, et al. Enhancing the production of light ole fi ns from heavy crude oils: Turning challenges into opportunities. Catal Today. 2018;(October 2017):0-1.
[7] Saniere A, Hénaut I, Argillier JF. Pipeline transportation of heavy oils, a strategy, economic and technological challenger: oil and gas. Oil Gas Sci Technol IFP. 2004;59(5):455-66.
[8] Owen NA, Inderwildi OR, King DA. The status of conventional world oil reserves-Hype or cause for concern? Energy Policy. 2010;38(8):4743-9.
[9] Yan S, Zhuo L, Zhenxue J, Qun L, Dongdong L, Zhiye G. Progress and development trend of unconventional oil and gas geological research. Pet Explor Dev. 2017;44(4):675-85.
[10] Hosseini SH, Hamed SG. A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach. Energy Policy. 2016;91:64-74.
[11] Alboudwarej H, Felix J (John), Taylor S, Badry R, Bremner C, Brough B, et al. Highlighting Heavy Oil. Oilfield Review. 2006;18(2):38-59.
[12] Oñate-Morales, José Anibal. Rodriguez-Navas RF. Evaluación de las alternativas de transporte de crudo pesado por tuberías: caso aplicado al campo rubiales (tesis pregrado). Bucaramanga, Colombia: Universidad Industrial de Santander; 2012.
[13] Kumar R, Banerjee S, Mandal A, Naiya TK. Flow improvement of heavy crude oil through pipelines using surfactant extracted from soapnuts. J Pet Sci Eng. 2017;152:353-60.
[14] Afra S, Nasr-El-Din HA, Socci D, Cui Z. Green phenolic amphiphile as a viscosity modifier and asphaltenes dispersant for heavy and extra-heavy oil. Fuel. 2018;220:481-9.
[15] Cavicchio CAM, Biazussi JL, de Castro MS, Bannwart AC, Rodriguez OMH, de Carvalho CHM. Experimental study of viscosity effects on heavy crude oil-water core-annular flow pattern. Exp Therm Fluid Sci. 2018; 92:270-85.
[16] Hein FJ. Geology of bitumen and heavy oil: An overview. J Pet Sci Eng. 2017;154:551-63.
[17] Patiño EJ, Martinez CA, Novoa LA, Barrero R. Colombian asphaltenes: The ionic superficial carácter and their interactions with ionic surfactants. En: Rio Oil & Gas Expo and Conference 2014. Rio de Janeiro: Copyright 2014, Brazilian Petroleum, Gas and Biofuels Institute - IBP; 2014.
[18] Afanasjeva N, Lizcano-valbuena WH, Aristizabal N, Mañozca I. Electrodeposición de vanadio y níquel de los asfaltenos de crudos pesados V and Ni electrochemical deposition from asphaltenes in heavy oils. Ing y Compet. 2015;17(2):9-17.
[19] Santos RG, Loh W, Bannwart AC, Trevisan OV. An overview of heavy oil properties and its recovery and transportation methods. Brazilian J Chem Eng. 2014;31(3):571-90.
[20] Husin H, Azizi A, Husna A. An overview of viscosity reducers in heavy crude oil production. En: ResearchGate, Conference: Chemeca; 2014 sep; At Perth, Australia. p. Paper No. 838.
[21] Djemiat DE, Safri A, Benmounah A, Safi B. Rheological behavior of an Algerian crude oil containing Sodium Dodecyl Benzene Sulfonate (SDBS) as a surfactant: Flow test and study in dynamic mode. J Pet Sci Eng. 2015;133:184-91.
[22] Alvarez Díaz CJ, Martínez Rey R, Patiño Reyes EJ. Estudio experimental sobre la eficiencia de un tratamiento de ultrasonido en un sistema de flujo continuo para la reducción de viscosidad de crudo pesado. Rev ION. 2013;26(2):47-63.
[23] Subramanian D, Wu K, Firoozabadi A. Ionic liquids as viscosity modifiers for heavy and extra-heavy crude oils. Fuel. 2015;143(December):519-26.
[24] Herrera CD. Modelo de estabilidad de asfaltenos como herramienta para predecir el daño de formación en pozos productores de petróleo con alto contenido de CH4, CO2 o N2 (tesis maestría). Medellín, Colombia: Universidad Nacional De Colombia; 2015.
[25] Abarca Vinueza AG. Estudio del efecto de reductores de viscosidad en crudos pesados (tesis pregrado). Quito, Ecuador: Escuela Politécnica Nacional; 2016.
[26] Camacho Briones C, Cámara Mendoza JR. Evaluación de las tecnologías aplicadas al transporte de crudo pesado en tuberías (tesis pregrado). México D. F., México: Universidad Nacional Autónoma De México; 2014.
[27] Buenrostro-Gonzalez E, Groenzin H, Lira-Galeana C, Mullins OC. Asphaltenes. Energy & Fuels. 2001;15(13):972–8.
[28] Akbarzadeh K, Hammami A, Zhang D, Allenson S, Creek J, Kabir S, et al. Asphaltenes—problematic but rich in potential. Oilfield Review. 2007;22-43.
[29] Groenzin H, Mullins OC. Molecular size and structure of asphaltenes. Pet. Sci. Technol. 2001;19:219-30.
[30] Mullins OC. Review of the molecular struction and aggregation of asphaltenes and petroleomics. SPE J. 2008;13(1):48-57.
[31] Langevin D, Argillier JF. Interfacial behavior of asphaltenes. Adv. Colloid Interface Sci. 2016;233:83-93.
[32] Mullins OC. The Asphaltenes. Annu. Rev. Anal. Chem. 2011;4(1):393-418.
[33] Coelho RR, Hovell I, De Mello Monte MB, Middea A, De Souza AL. Characterisation of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelling and FTIR techniques. Fuel Process Technol. 2006;87(4):325-33.
[34] Groenzin H, Mullins OC, Eser S, Mathews J, Yang MG, Jones D. Molecular size of asphaltene solubility fractions. Energy and Fuels. 2003;17(2):498-503.
[35] Yen TF. Structure of petroleum asphaltene and its significance. Energy Sources. 1974;1(4):447-63.
[36] Mullins OC. The modified yen model. Energy and Fuels. 2010;24(4):2179-207.
[37] Alcazar-Vara LA, Garcia-Martinez JA, Buenrostro-Gonzalez E. Effect of asphaltenes on equilibrium and rheological properties of waxy model systems. Fuel. 2012;93:200-12.
[38] Ebrahimi M, Mousavi-Dehghani SA, Dabir B, Shahrabadi A. The effect of aromatic solvents on the onset and amount of asphaltene precipitation at reservoir conditions: Experimental and modeling studies. J. Mol. Liq. 2016;223:119-27.
[39] Garreto MSE, Mansur CRE, Lucas EF. A model system to assess the phase behavior of asphaltenes in crude oil. Fuel. 2013;113:318-22.
[40] Sjöblom J, Simon S, Xu Z. Model molecules mimicking asphaltenes. Adv. Colloid Interface Sci. 2015;218:1-16.
[41] Vafaie-Sefti M, Mousavi-Dehghani SA, Mohammad-Zadeh M. A simple model for asphaltene deposition in petroleum mixtures. Fluid Phase Equilib. 2003;206:1-11.
[42] Zeinali Hasanvand M, Ahmadi MA, Mosayebi Behbahani R, Feyzi F. Developing grey-box model to diagnose asphaltene stability in crude oils: Application of refractive index. Petroleum. 2016;2(4):369-80.
[43] Groenzin H, Mullins OC. Asphaltene molecular size and structure. J. Phys. Chem. A. 1999;103(50):11237-45.
[44] Velásquez I, Pereira JC. Emulsiones de agua en crudo. Aspectos Generales. Rev. Ing. UC. 2015;21(3):45-54.
[45] Hortal AR, Hurtado P, Martnez-haya B, Mullins OC, Martı B. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption / ionization experiments molecular-weight distributions of coal and petroleum asphaltenes from laser desorption / ionization experiments. Energy & Fuels. 2007;21(15):2863-8.
[46] Andreatta G, Goncalves CC, Buffin G, Bostrom N, Quintella CM, Arteaga-larios F, et al. Nanoaggregates and structure - function relations in asphaltenes. Energy & Fuels. 2005;19(6):1282-9.
[47] Betancourt SS, Ventura GT, Pomerantz AE, Viloria O, Dubost FX, Zuo J, et al. Nanoaggregates of asphaltene in a reservoir crude oil and reservoir connectivity. Energy Fuels. 2009;23(3):1178-88.
[48] Zeng H, Song Y-Q, Johnson DL, Mullins OC. Critical nanoaggregate concentration of asphaltenes by direct-curretn (DC) electrical conductivity. Energy & Fuels. 2009;23(3):1201-8.
[49] Goual L, Sedghi M, Zeng H, Mostowfi F, McFarlane R, Mullins OC. On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation. Fuel. 2011;90(7):2480-90.
[50] Mostowfi F, Indo K, Mullins OC, McFarlane R. Asphaltene nanoaggregates studied by centrifugation. Energy and Fuels. 2009;23(3):1194-200.
[51] Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, et al. Advances in asphaltene science and the Yen-Mullins model. Energy and Fuels. 2012;26(7):3986-4003.
[52] Wu Q, Seifert DJ, Pomerantz AE, Mullins OC, Zare RN. Constant asphaltene molecular and nanoaggregate mass in a gravitationally segregated reservoir. Energy and Fuels. 2014;28(5):3010-5.
[53] Zuo JY, Mullins OC, Freed D, Elshahawi H, Dong C, Seifert DJ. Advances in the flory-hüggins-zuo equation of state for asphaltene gradients and formation evaluation. Energy & Fuels. 2013;27(4):1722-35.
[54] Mousavi M, Abdollahi T, Pahlavan F, Fini EH. The influence of asphaltene-resin molecular interactions on the colloidal stability of crude oil. Fuel. 2016;183:262-71.
[55] Andreatta G, Bostrom N, Mullins OC. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants. Langmuir. 2005;21(7):2728-36.
[56] Labrador-Sánchez H, Alvarado Z, Dorta R, Rizzo A. Síntesis y evaluación del N, N, N’-trimetil–N ́-octadecil–1, 2-diaminoetano (TODE) como dispersante de la fracción de asfalteno. REDIP. 2014;4(1):568-82.
[57] Al-Sahhaf TA, Fahim MA, Elkilani AS. Retardation of asphaltene precipitation by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase Equilib. 2002;194:1045-57.
[58] Yang F, Li C, Yang S, Zhang Q, Xu J. Effect of dodecyl benzene sulfonic acid (DBSA) and lauric amine (LA) on the associating state and rheology of heavy oils. J. Pet. Sci. 2014;124:19-26.
[59] Badger MW, Schobert HH. Viscosity reduction in extra heavy crude oils. En: ACS Division of Fuel Chemistry, Preprints. 1998. p. 461-3.
[60] Chávez-Miyauchi TE, Zamudio-Rivera LS, Barba-López V. Aromatic polyisobutylene succinimides as viscosity reducers with asphaltene dispersion capability for heavy and extra-heavy crude oils. Energy and Fuels. 2013;27(4):1994-2001.
[61] Valbuena V, Lima L De, Ranaudo M. Obtención y caracterización molecular de resinas tipo I y resinas tipo II de crudos venezolanos. Rev. Ing. UC. 2012;19(2):25-34.
[62] Hashmi SM, Firoozabadi A. Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid. J. Colloid Interface Sci. 2013;394(1):115-23.
[63] Alvarez-Ramirez F, Ramirez-Jaramillo E, Ruiz-Morales Y. Calculation of the interaction potential curve between asphaltene- asphalten, asphaltene- resin , and resin- resin systems using density functional theory. Energy & Fuels. 2006;20(10):195-204.
[64] De León-Barreneche J, Hoyos-Madrigal BA, Cañas-Marín WA. Aggregation study of asphaltenes from colombian Castilla crude oil using molecular simulation. Rev. Fac. Ing. 2015;(77):25-31.
[65] Suárez Domínguez E, Betancourt Mar J, Llanos Pérez J, Nieto Villar J, Palacio Pérez A, Izquierdo Kulich E. Dimensión fractal de asfaltenos en capa delgada en presencia de un estabilizante. Rev. Cuba Quim. 2013;XXV(3):311-8.
[66] Martínez-Martín E, Acosta-Martínez L, Ramírez-Apodaca FD. Emulsificación de petróleo crudo para su trasporte por oleoductos. Ing. Investig. y Tecnol. 2016;17(3):395-403.
[67] Reyes J, Cerón-Camacho R, Martínez-Palou R, Villanueva D, Vallejo AA, Aburto J. Study of the formation and breaking of extra-heavycrude-oil-in-water emulsions-A proposed strategy for transporting extra heavy crude oils. Chem. Eng. Process Process Intensif. 2015;98:112-22.
[68] Ashrafizadeh SN, Kamran M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010;71(3-4):205-11.
[69] Martínez-Palou R, Lourdes M De, Zapata-Rendón B, Mar-Juárez E, Bernal-Huicochea C, Chávez-Lopez J, Aborto J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. J Pet Sci Eng. 2011;75(3-4):274-82.
[70] Hart A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J Petrel Explor Prod Technol. 2014;4:327-36.[71] Gateau P, Hénaut I, Barré L, Argillier JF. Heavy oil dilution. Oil Gas Sci Technol. 2004;59(5):503-9.
[72] Shigemoto N, Al-Maamari RS, Jibril BY, Hirayama A. A study of the effect of gas condesate on the viscosity and storage stability of Omani heavy crude oil. Energy and Fuels. 2006;20(6):2504-8.
[73] Kanaveli I, Atzemi M, Lois E. Predicting the viscosity of diesel / biodiesel blends. Fuel. 2017;199:248-63.
[74] Chávez-Miyauchi TE, Zamudio-Rivera LS, Barba-López V, Buenrostro-Gonzalez E, Martínez-Magadán JM. N-aryl aminoalcohols as stabilizers of asphaltenes. Fuel. 2013;110:302-9.
[75] Murgich J, Rodríguez, Aray Y. Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy & Fuels. 1996;10(1):68-76.
[76] Ashoori S, Sharifi M, Masoumi M, Mohammad Salehi M. The relationship between SARA fractions and crude oil stability. Egypt J. Pet. 2017;26(1):209-13.
[77] Östlund JA, Nydén M, Fogler HS, Holmberg K. Functional groups in fractionated asphaltenes and the adsorption of amphiphilic molecules. Colloids Surfaces A Physicochem Eng Asp. 2004;234(1-3):95-102.
[78] Song X, Dong L, Cao X, Xu Z, Wang C, Zhang L, et al. Dynamic interfacial tensions of p-(n-lauryl)-benzyl polyoxyethylene ether carboxybetaine solutions. J. Pet. Sci. Eng. 2014;124:27-34.
[79] Eastoe J, Tabor RF. Surfactants and Nanoscience. En: Colloidal Foundations of Nanoscience. Berti D, Palazzo G, editors. 1stEdition. Poland: Elsevier B.V.; 2014. p. 135-57.
[80] Foley P, Kermanshahi pour A, Beach E, Zimmerman J. Derivation and synthesis of renewable surfactants. Chem. Soc. Rev. 2012;41(4):1499-518.
[81] Alomair OA, Almusallam AS. Heavy crude oil viscosity reduction and the impact of asphaltene precipitation. Energy & Fuels. 2013;27(12):7267-76.
[82] Spiecker PM. The impact of asphaltene chemistry and solvation on emulsion and interfacial film formation (tesis doctoral). Raleigh, Estados Unidos de America: North Carolina State University; 2001.
[83] Karambeigi MA, Nikazar M, Kharrat R. Experimental evaluation of asphaltene inhibitors selection for standard and reservoir conditions. J. Pet. Sci. Eng. 2016;137:74-86.
[84] Hussein HQ, Mohammad SA. Viscosity reduction of sharqi baghdad heavy crude oil using different polar hydrocarbons, oxygenated solvents. Iraqi J. Chem. Pet. Eng. 2014;15(2):39-48.
[85] Al-Shafey HI, Hashem AI, Hameed RSA, Dawood EA. Studies on the influence of long chain acrylic esters co-polymers grafted with vinyl acetate as flow improver additives of crude oils. Adv. Appl. Sci. Res. 2011;2(5):476-89.
[86] Jian C, Tang T, Bhattacharjee S. Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy & Fuels. 2013;27:2057-67.
[87] Qi Y, Zakin JL. Chemical and rheological characterization of drag-reducing cationic surfactant systems. Ind. Eng. Chem. Res. 2002;41(25):6326-36.
[88] Wiehe IA, Liang KS. Asphaltenes, resins, and other petroleum macromolecules. Fluid Phase Equilib. 1996;117:201-10.
[89] Llanos A, González V, González JL, Flores J, Betancourt J, Suárez J. Comparación de reducción de viscosidad entre un bioreductor de viscosidad y xilenos aplicados a hidrocarburos. Fides Unitas Scientia Et Veritas. México; 2008.
[90] Pons-Jiménez M, Cartas-Rosado R, Martínez-Magadán JM, Oviedo-Roa R, Cisneros-Dévora R, Beltrán HI, et al. Theoretical and experimental insights on the true impact of C12TAC cationic surfactant in enhanced oil recovery for heavy oil carbonate reservoirs. Colloids Surfaces A Physicochem Eng. Asp. 2014;455(1):76-91.
[91] Guo J, Wang H, Chen C, Chen Y, Xie X. Synthesis and evaluation of an oil-soluble viscosity reducer for heavy oil. Pet Sci. 2010;7(4):536-40.
[92] Carnahan NF, Salager J, Anto R, Da A. Properties of resins extracted from boscan crude oil and their effect on the stability of asphaltenes in boscan and hamaca crude oils. Energy & Fuels. 1999;(14):309-14.