Vol. 28 Núm. 2 (2015): Revista ION
Artículos

Síntesis y evaluación de recubrimientos base fluoruro empleando fuentes alternativas al HF sobre la aleación Elektron 21 para la fabricación de implantes ortopédicos biodegradables

Leidy Andrea Rojas Flórez
Universidad Industrial de Santander (UIS)
Biografía
Henry Alberto Briceño Urbina
Universidad Industrial de Santander (UIS)
Biografía
Carlos Andrés Hernández Barrios
Universidad Industrial de Santander (UIS)
Biografía
Claudia Nieves Barrera
Universidad Industrial de Santander (UIS)
Biografía
Darío Yesid Peña Ballesteros
Universidad Industrial de Santander (UIS)
Biografía
Fernando Viejo Abrante
Universidad Industrial de Santander (UIS)
Biografía
Ana Emilse Coy Echeverria
Universidad Industrial de Santander (UIS)
Biografía

Publicado 2015-12-30

Palabras clave

  • Recubrimientos,
  • Aleación,
  • Magnesio,
  • Implantes Ortopédicos,
  • Biodegradable,
  • Corrosión.
  • ...Más
    Menos

Cómo citar

Rojas Flórez, L. A., Briceño Urbina, H. A., Hernández Barrios, C. A., Nieves Barrera, C., Peña Ballesteros, D. Y., Viejo Abrante, F., & Coy Echeverria, A. E. (2015). Síntesis y evaluación de recubrimientos base fluoruro empleando fuentes alternativas al HF sobre la aleación Elektron 21 para la fabricación de implantes ortopédicos biodegradables. Revista ION, 28(2). https://doi.org/10.18273/revion.v28n2-2015001

Resumen

En la actualidad se han postulado las aleaciones de magnesio como una alternativa prometedora en la fabricación de implantes biodegradables debido a su excelente degradabilidad, biocompatibilidad y propiedades mecánicas comparables a las del hueso; sin embargo, su elevada velocidad de corrosión hace necesario el diseño de recubrimientos biodegradables, entre los que se destaca aquellos sintetizados por conversión química en medio HF(hasta 48%v). No obstante, el empleo de este ácido genera grandes problemas en términos de seguridad, ya que es altamente tóxico. Surge entonces la necesidad de hallar vías alternativas que permitan sustituir dicho ácido o limitar su uso a cantidades reducidas. En el presente trabajo se evaluaron mezclas HF (4%v) -NaF y H3PO4-NaF como alternativas al empleo de HF en la síntesis de recubrimientos biodegradables sobre la aleación de magnesio Elektron 21. La caracterización microestructural de los recubrimientos se realizó mediante microscopía electrónica de barrido y difracción de rayos X, mientras que la resistencia a la corrosión se evaluó mediante ensayos electroquímicos y gravimétricos en solución Hank a 27°C. Los resultados mostraron que en presencia de NaF, los recubrimientos sintetizados están constituidos por una bicapa MgF2-x(OH)x/NaMgF3, donde la presencia de NaMgF3 evita el ataque localizado por picadura, haciendo que el proceso de degradación de los recubrimientos sea uniforme y progresivo. Particularmente, los recubrimientos sintetizados bajo la condición H3PO4 1,6%v-NaF 0,5M mostraron un excelente comportamiento, superior a los obtenidos con el empleo de HF, por lo que se postulan como excelentes candidatos para el reemplazo inmediato de este ácido.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Kamachi M, Sridhar T, Raj B. Corrosion of bio implants. Sadhana. 2003;28:601-37.

[2] Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008;12:63-72.

[3] Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment:A review. Acta Biomater. 2011;7:1452-9.

[4] Speich M, Bousquet B, Nicolas G. Reference values for ionized, complexed, and protein-bound plasma magnesium in men and women. Clin. Chem. 1981;27:246-8.

[5] Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliú S. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim. Acta. 2008;53:7890-902.

[6] Coy AE, Viejo F, Skeldon P, Thompson GE. Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy. Corros. Sci. 2010;52:387-97.

[7] Gray JE, Luan B. Protective coatings on magnesium and its alloys - a critical review. J. Alloys Compd. 2002;336:88-113.

[8] Razavi M, Fathi MH, Meratian M. Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Lett. 2010;64:2487-90.

[9] Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, et al. Magnesium alloys as implant materials- Principles of property design for Mg–RE alloys. Acta Biomater. 2010;6:1714-25.

[10] Pereda MD, Alonso C, Burgos-Asperilla L, del Valle JA, Ruano OA, Perez P, et al. Corrosion inhibition of powder metallurgy Mg by fluoride treatmentes. Acta Biomater. 2010;6:1772-82.

[11] Kirkland NT, Lespagnol J, Birbilis N, Staiger MP. A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 2009;52:287-91.

[12] Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys - a review. Acta Biomater. 2012;8:2242-455.

[13] Kubásek J, Vojtěch D. Structural and corrosion characterization of biodegradable Mg−RE (RE=Gd, Y, Nd) alloys. Trans. Nonferrous Met. Soc. China. 2013;23:1215-25.

[14] GuX, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484-98.

[15] Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. ActaBiomater. 2010;6:1834-1842.

[16] Chun-yan Z, Rong-chang Z, Rong-shi C, Cheng-long L, Jia-cheng G. Preparation of calcium phosphate coatings on Mg-1.0Ca alloy. Trans. Nonferrous Met. Soc. China. 2010;20:s655-59.

[17] Ng WF, Wong MH, Cheng FT. Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks’ solution. Surf. Coat. Technol. 2010;204:1823-30.

[18] Carboneras M, Hernández LA, Mireles YE, Hernández LS, García MC, Escudero ML. Tratamientos químicos de conversión para la protección de magnesio biodegradable en aplicaciones temporales de reparación ósea. Revista de metalurgia. 2010;46:86-92.

[19] Alvarez M, Pereda MD, del Valle JA, Fernandez M, Garcia MC, Ruano OA, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 2010;6:1763-71.

[20] Yan T, Tan L, Xiong D, Liu X, Zhang B, Yang K. Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater. Sci. Eng. C. 2010;30:740-8.

[21] Gupta RK, Mensah-Darkwa K, Kumar D. Corrosion protective conversion coatings on magnesium disks using a hydrothermal technique. J. Mater. Sci. Technol. 2014;30:47-63.

[22] Pereda MD, Alonso C, Gamero M, del Valle JA, Fernández M. Comparative study of fluoride conversion coatings formed on biodegradable powder metallurgy Mg: The effect of chlorides at physiological level. Mater. Sci. Eng. C. 2011;31:858-65.

[23] Wu L, Dong J, Ke W. Potentiostatic deposition process of fluoride conversion film on AZ31 magnesium alloy in 0.1 M KF solution. Electrochim. Acta. 2013;105:554-9.

[24] Cui X, Li Q, Li Y, Wang F, Jin G, Ding M. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy. Appl. Surf. Sci. 2008;255:2098-103.

[25] Cui X, Li Y, Li Q, Jin G, Ding M, Wang F. Influence of phytic acid concentration on performance of phytic acid conversion coatings on the AZ91D alloy. Mater. Chem. Phys. 2008;111:503-7.

[26] Chiu KY, Wong MH, Cheng FT, Man HC. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf. Coat. Technol. 2007;202:590-8.

[27] Mertz W. The essential trace elements. Sci. 1981;213:1332-8.

[28] Carboneras M, García-Alonso MC, Escudero ML. Biodegradation kinetics of modified magnesium-based materials in cell culture medium. Corros. Sci. 2011;53:1433-9.

[29] Zhu Y, Wu G, Zhang YH, Zhao Q. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31. Appl. Surf. Sci. 2011;257:6129-37.

[30] Bakhsheshi-Rad HR, Idris M, Abdul MR, Daroonparvar M. Effect of fluoride treatment on corrosion behavior of Mg-Ca binary alloy for implant application. Trans. Nonferrous Met. Soc. China. 2013;23:699-710.

[31] Conceicao TF, Scharnagl N, Blawert C, Dietzel W, Kainer KU. Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behavior. Thin Solid Films. 2010;518:5209-18.

[32] Zheng RF, Liang CH. Conversion coating treatment for AZ91 magnesium alloys by a permanganate-REMS bath. Materials and Corrosion. 2007;58:193-7.

[33] Khan AA, Marrow TJ. In-situ observation of damage mechanisms by digital image correlation during tension and low cycle fatigue of magnesium alloys. 12th International Conference on Fracture; 2009 july 12-17; Ottawa, Canada. Red Hook, NY, USA: Curran Associates, Inc; 2010.p. 871-79.

[34] ASTM E407-07(2015), Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2015, DOI:10.1520/E0407-07R15, www.astm.org.

[35] Zhang CY, Zeng RC, Liu CL, Gao JC. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surf. Coat. Technol. 2010;204:3636-40.

[36] Norma ASTM G1-90. “Standard practice for preparing, cleaning, and evaluating corrosion test specimens”. 1990.

[37] ASTM NACE / ASTMG31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, PA, 2012, DOI: 10.1520/G0031-12A, www.astm.org.

[38] Kielbus A. Microstructure and mechanical properties of Elektron 21 alloy after heat treatment. JAMME. 2007;20:127-30.

[39] Mao L, Yuan G, Niu J, Zong Y, Ding W. In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment. Mater. Sci. Eng. C. 2013;33:242-50.