Vol. 29 Núm. 1 (2016): Revista ION
Artículos

Evaluación de la co-digestión anaerobia de lodos de aguas residuales municipales con residuos de alimentos

Ileana Consuelo Julio Guerrero
Grupo GAIA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA
Carlos Alberto Peláez Jaramillo
Grupo GIEM, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA
Francisco José Molina Perez
Grupo GAIA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA

Publicado 2016-07-15

Palabras clave

  • Co-digestión,
  • Producción de Metano,
  • Lodo Primario,
  • Lodo Secundario Espesado,
  • Residuos de Alimentos.

Cómo citar

Julio Guerrero, I. C., Peláez Jaramillo, C. A., & Molina Perez, F. J. (2016). Evaluación de la co-digestión anaerobia de lodos de aguas residuales municipales con residuos de alimentos. Revista ION, 29(1). https://doi.org/10.18273/revion.v29n1-2016005

Resumen

La digestión anaerobia es un proceso ampliamente utilizado para el tratamiento de los lodos producidos en las plantas de tratamiento de agua residual, debido a sus ventajas técnicas y económicas. Este rtículo presenta un estudio en el que se evaluó la co-digestión de lodos de aguas residuales con residuos de alimentos (RA) como una estrategia para optimizar la digestión de los lodos. Se realizaron ono-digestiones y co-digestiones de los sustratos en condiciones mesofílicas (35°C) usando reactores por lotes. Los lodos utilizados fueron: lodo primario (LP), lodo secundario espesado (LSE) y una mezcla de LP con LSE en la proporción 60:40 con base en sólidos totales (LP:LSE). Las co-digestiones se realizaron usando distintas proporciones de mezclas de los sustratos con base en sólidos volátiles totales: LP:RA=30:70, LP:RA=50:50, LP:RA=70:30 y (LP+LSE):RA=70:30. La máxima producción de metano, 0,25LCH4 /gSVadicionado, se obtuvo para la mezcla LP:RA=30:70, presentando una producción 32% mayor que la obtenida en la mono-digestión del lodo primario.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Appels L, Lauwers J, Degrève J, Helsen L, Lievens B, Willems K, et al. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Energy Rev. 2011;15(9):4295-301.

[2] Rao PV, Baral SS. Experimental design of mixture for the anaerobic co-digestion of sewage sludge. Chem Eng J. 2011;172(1-2):977-86.

[3] Arnaiz C, Gutierrez JC, Lebrato J. Biomass stabilization in the anaerobic digestion of wastewater sludges. Bioresour. Technol. 2006;97(10):1179-84.

[4] Nathan DP, Ronald WT, Steve SH. Comparison of methane production by co-digesting fruit and vegetable waste with first stage and second stage anaerobic digester sludge from a two stage digester. Water Sci. Technol. 2012;65(7):1252–7.

[5] Kim J, Kang C-M. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour. Technol. 2015;189:409-12.

[6] Cesaro A, Naddeo V, Amodio V, Belgiorno V. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem. 2012;19(3):596-600.

[7] Gómez X, Cuetos MJ, Cara J, Morán A, García AI. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renew Energy. 2006;31(12):2017-24.

[8] Bond T, Brouckaert CJ, Foxon KM, Buckley CA. A critical review of experimental and predicted methane generation from anaerobic codigestion. Water Sci Technol. IWA Publishing. 2012;65(1):183-9.

[9] Lin J, Zuo J, Gan L, Li P, Liu F, Wang K, et al. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J Environ Sci. 2011;23(8):1403-8.

[10] Cabbai V, Ballico M, Aneggi E, Goi D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag. 2013;33(7):1626-32.

[11] Iacovidou E, Ohandja D-G, Voulvoulis N. Food waste co-digestion with sewage sludge – Realising its potential in the UK. J Environ Manage. 2012;112:267-74.

[12] Huang W, Huang W, Yuan T, Zhao Z, Cai W, Zhang Z, et al. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate. Water Res. 2016;90:344-53.

[13] Zeng Y, De Guardia A, Dabert P. Improving composting as a post-treatment of anaerobic digestate. Bioresour. Technol. 2016;201:293-303.

[14] Zeshan, Visvanathan C. Evaluation of anaerobic digestate for greenhouse gas emissions at various stages of its management. Int Biodeterior Biodegradation. 2014;95(A):167-75.

[15] Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol. 2009;59(5):927-34.

[16] Ponsá S, Gea T, Sánchez A. Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst Eng. 2011;108(4):352-60.

[17] APHA. Standard Methods for Examination of Water and Wastewater. 22nd ed. New York: American Public Health Association; 2012.

[18] Instituto Colombiano de Normas Técnicas NTC 5167. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo. Bogotá, Colombia; 2004.

[19] Jenkins SR, Morgan JM, Sawyer CL. Measuring anaerobic sludge digestion and growth by a simple alkalimetric titration. Water Pollut Control Fed. 1983;55(5):448–53.

[20] Ripley LE, Boyle WC, Converse JC. Improved alkalimetric monitoring for anaerobic digestion of high strength wastes. Water Pollut Control Fed. 1986;58(5):406–11.

[21] Jain S, Jain S, Wolf IT, Lee J, Tong YW. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev. 2015;52:142-54.

[22] Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res. 2003;7(3):609-16.

[23] Koch K, Plabst M, Schmidt A, Helmreich B, Drewes JE. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences. Waste Manag. 2016;47(A):28-33.

[24] Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Management.2012;32(10):1821-5.

[25] Siddiqui Z, Horan NJ, Anaman K. Optimisation of C:N Ratio for Co-Digested Processed Industrial FoodWaste and Sewage Sludge Using the BMP Test. Int J Chem React Eng. 2011;9(1):1-12.