Vol. 20 Núm. 1 (2022): Revista Fuentes, el reventón energético
Artículos

Tecnologias de captura, transporte, sequestroe armazenamento de CO2:implicações para o uso de energia sustentável

Deisy Tellez Burgos
Fundación Universidad de América
Larissa Silva da Silveira
LOTEP Laboratorio de Operações e Tecnologias Energéticas Aplicadas na Indústria do Petróleo, Faculty of Petroleum Engineering
Vando Gomes
HIDROLAB Laboratório de Hidráulica Ambiental, Faculty of Coastal and Ocean Engineering
Raúl Salinas Silva
Fundación de educación Superior San José
Stefanny Camacho-Galindo
Fundación de educación Superior San José
José Leão de Luna
LSED Laboratório de Sedimentologia, Faculty of Petroleum Engineering, Federal University of Pará, Salinópolis, Brazil
Emanuele Dutra Valente Duarte
LOTEP Laboratorio de Operações e Tecnologias Energéticas Aplicadas na Indústria do Petróleo, Faculty of Petroleum Engineering, Federal University of Pará, Salinópolis, Brazil

Publicado 2022-06-30

Palabras clave

  • Dióxido de carbono,
  • Captura,
  • Transporte,
  • Sequestro,
  • Armazenamento,
  • Emissões de CO2
  • ...Más
    Menos

Cómo citar

Tellez Burgos , D. ., Silva da Silveira , L. ., Gomes, V. ., Salinas Silva, R. ., Camacho-Galindo , S. ., Leão de Luna , J. ., & Valente Duarte , E. D. . (2022). Tecnologias de captura, transporte, sequestroe armazenamento de CO2:implicações para o uso de energia sustentável. Fuentes, El reventón energético, 20(1), 31–44. https://doi.org/10.18273/revfue.v20n1-2022004

Resumen

Com o aumento da necessidade energética acompanhando o crescimento da população mundial tem-se tornado maior a preocupação com poluição, aquecimento global e queimadas. Essa preocupação incentiva investimentos e pesquisas no âmbito do desenvolvimento sustentável, sendo a geração de dióxido de carbono uma das maiores problemáticas na indústria de energia, com a queimada de combustíveis fósseis e seu forte impacto no aquecimento global. O dióxido de carbono é um gás que participa do efeito estufa e tem contribuído para o aumento da temperatura global, aumento no nível do mar e diminuição das geleiras. Para reduzir as emissões de CO2 na atmosfera estão sendo utilizadas tecnologias de captura, transporte, sequestro e armazenamento de dióxido de carbono. Este trabalho busca fazer uma revisão dos tipos dessas tecnologias, analisar sua aplicabilidade e esclarecer os principais conceitos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. (NIH), N. L. (16 de Marzo de 2005). PubChem. Obtenido de PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/Carbon-dioxide
  2. Ajayi, T., Salgado Gomes, J., & Bera, A. (2019). A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Petroleum Science, 1028-1063.
  3. Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour, 178-187.
  4. Al-Yaseri, A., Yekeen, N., Al-Mukainah, H. S., Kakati, A., Alfarge, D., & Myers, M. (2022). CO2 storage capacity and integrity depend on CO2-carbonate rock interaction rock-wettability impact on CO2-Carbonate rock interaction and the attendant effects on CO2 storage in carbonate reservoirs. Journal of Natural Gas Science and Engineering, 104664.
  5. Angel, Camara, A., & Conama, F. (2020). Captura y almacenamiento de CO2. Madrid : Fundación Conama.
  6. Arora, V., Kumar Saran, R., Kumar , R., & Yadav, S. (2019). Separation and sequestration of CO2 in geological formations. Materials Science for Energy Technologies, 647-657.
  7. Aspelund, A., Sandvik, T. E., Krogstad, H., & De Koeijer, D. (2004). Liquefaction of captured CO2 for ship-based transport. Elsevier, 2545-2549.
  8. Birat, J. P. (2010). Carbon dioxide (CO2) capture and storage technology in the iron and steel industry. Woodhead Publishing Series in Energy, 492-521.
  9. Buesseler, K. O., Andrews, J. E., Pike, S. M., & Charette, M. A. (2004). The effects of iron fertilization on carbon sequestration in the southern ocean. Science, 414-417.
  10. Cannone , S. F., Lanzini, A., & Santarelli, M. (2021). A Review on CO2 Capture Technologies with Focus on CO2-Enhanced Methane Recovery from Hydrates. Energies, 32.
  11. Castro, O. L. A., Jaramillo, J. E., & Blanco, H. A. (2013). Estimación de emisiones de gei (CO2 y CH4) generadas durante el transporte de gas natural en Colombia, aplicando metodología IPCC. Fuentes: El reventón energético, 11(2), 4.
  12. Cassio, H. Z., Bravo, C. O., & Machado, N. F. (2015). Biofuel production from thermocatalytic processing of vegetable oils: a review.
  13. Causse, C., Mokhnacheva, D., & Camus, G. (2016). Ocean, Environment, Climate Change and Human Migration. Ocean and Climate Scientific Notes, 66-71.
  14. Change, I. P. (2005). Carbon Dioxide Capture and Storage. Cambridge: Cambridge University.
  15. Chemists, J. (2010). What is carbon dioxide and how is it discovered? Chemical Business, 49-51.
  16. Coleman , David; Davison, John; Hendriks, Chris ; Ozaki, Masahiko. (2013). Tranport of CO2. Intergovernamental Panel on Climate Change IPCC.
  17. Cygan, A., Jaschik, J., Wojdyla, A., & Tanczyk, M. (2020). The Separative Performance of Modules with Polymeric Membranes for a Hybrid Adsorptive/Membrane Process of CO2 Capture from Flue Gas. Membranes (Basel), 17.
  18. Da Costa, A. M., Amaral , C. S., Poiate, E., Pereira, A., Gattas, M., Martha, L. F., & Roehl, D. (2012). Underground storage of natural gas and CO2 in salt caverns. London: Harmonising Rock Engineering and the Environment.
  19. Da Costa, A. M., Costa, P. V., Miranda, A. C., Goulart, M. B., Udebhulu, O. D., Ebecken , N. F., . . . Breda, A. (2019). Caverna de sal experimental en aguas ultraprofundas en alta mar y evaluación del diseño de pozos para la reducción de CO2. Revista internacional de ciencia y tecnología mineras, 641-656.
  20. Daramola, M. O., Aransiola, E. F., & Ojumu, T. V. (2012). Potential applications of zeolite membranes in reaction coupling separation processes. Scopus, 2101-2136.
  21. Dillon, D. J., Panesar, R. S., Wall, R. A., Allam, R. J., White, V., Gibbins, J., & Hainees, M. R. (2005). XY-Combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant . Elsevier, 9.
  22. Ekmann, J., Zitelman, K., Huston, J., & Indrakanti, P. (2018). Carbon Capture, Utilization, and Sequestration: Technology and Policy Status and Opportunities. Washington : National Association of Regulatory Utility Commissioners.
  23. Elbakidze, L., & McCarl, B. (2007). Sequestration offsets versus direct emission reductions: Consideration of environmental co-effects. Ecological Economics , 564-571.
  24. Eldevik, F., Graver, B., Tobergsen, L. E., & Saugerud, O. T. (2009). Development of a Guideline for Safe, Reliable and Cost Efficient Transmission of CO2 in Pipelines . Elsevier, 7.
  25. Feely, R. A., Sabine, C. L., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 362-366.
  26. Fowless, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 427-432.
  27. Freguia, S., & Rochelle, G. (2003). Modeling of CO2 capture by aqueous monoethanolamine. AIChE Journal, 1676-1686.
  28. Georgios, A. F., & Christodoulides, P. (2008). Environment International . Elsevier, 13.
  29. Gilfillan, S., Lollar, B., Holland, G., Blagburn, D., Stevens , S., Schoell, M., . . . Lacrampe Couloume, G. (2009). . Solubility trapping in formation water as dominant CO2 sink in natural gas. Nature, 614-618.
  30. Global CCS Intitute. (2015). Transporting CO2. Melbourne: Global Carbon Capture and Storage Institute .
  31. Gomes , J. F. (2013). Captura y secuestro de dioxido de carbono: Una descripción general integrada de las tecnologías disponibles. Nova Science Publishers Inc.
  32. Gomes, J. F. (2013). Carbon Dioxide Capture and Sequestration: an Integrated Overview of Available Technologies. New York : Nova Science Publishers, Inc.
  33. Hernández, L. A. B., & Castellanos, E. A. S. (2017). Evaluación de procesos necesarios para captación y/o almacenamiento de CO2 como una medida de reducción al impacto ambiental.
  34. Hou, S., Chiang, C.-Y., & Lin, T.-h. (2020). Oxy-Fuel Combustion Characteristics of Pulverized. Aplied Sciences, 1-17.
  35. Institute, G. C. (2012). CO2 Capture Technologies. Global CCS Intitute.
  36. Intergovernmental panel on climate change. (2007). the physical science basis, Summary for policymakers. The Intergovernmental Panel on Climate Change.
  37. Jia, B., Chen, Z., & Xian, C. (2022). Investigations of CO2 storage capacity and flow behavior in shale formation. Journal of Petroleum Science and Engineering, 208, 109659.
  38. Kang , K., Seo, Y., Chang, D., Kang, S. G., & Huh, C. (2015). Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model. Energy, 22.
  39. Kharaka , Y., Thordsen , J., Hovorka, S., Seay, N., Cole, D., Phelps, T., & Knauss , K. (2009). Potential environmental issues of CO2 storage in deep saline aquifers: geochemical. Appl Geochem, 1106-1112.
  40. Kohan, A. L. (2000). Combustión, quemadores, controles y sistemas de seguridad de llama. Proceso básico de combustión. En A. Kohan, Manual de calderas: Principios operativos de mantenimiento, construccion, instalacion, reparacion, seguridad, requerimientos y normativas (págs. 409-474). Madrid: McGraw-Hill Interamericana de España S.A.U.
  41. Kumar, S. K., Viswandham, M., Gupta, A. S., & Kumar, S. G. (2013). A review of pre-combustion CO2 captura in IGCC. International Journal of Research in Engineering and Technology, 7.
  42. Lackner , K. S., & Miller, B. G. (2010). Eliminating CO2 Emissions from Coal-Fired Power Plants. Generating Electricity in a Carbon-Constrained World, 127-173.
  43. Lee, S., choi, G., Lee, C., & Lee, J. M. (2017). Optimal design and operating condition of boil-off CO2 re-liquefaction process, considering seawater temperature variation and compressor discharge temperature limit. Scopus, 29-45.
  44. Leung, D. Y., Caramanna , G., & Maroto Valer , M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 426-443.
  45. Li, J., Zhang, H., Gao, Z., Fu, J., Ao, W., & Dai, J. (2017). CO2 Capture with Chemical Looping Combustion of Gaseous Fuels: An Overview. Energy Fuels, 3475-3524.
  46. Li, Z., Su, Y., Li, L., Hao, Y., Wang, W., Meng, Y., & Zhao, A. (2022). Evaluation of CO2 storage of water alternating gas flooding using experimental and numerical simulation methods. Fuel, 311, 122489.
  47. Lockwood, T. (2014). Developments in oxyfuel combustion. London: IEA Clean Coal Centre.
  48. Marchetti, C. (1997). On geoengineering and the CO2 problem. Climatic Change, 59-68.
  49. Mazzoccoli , M., De Guido, G., Bosio, B., Arato, E., & Pellegrini, L. A. (2013). CO2-mixture Properties for Pipeline Transportation in the CCS Process. AIDIC The italian Association of Chemical Engineering, 6.
  50. Medina Valtierra , J. (2020). La Dieta del Dióxido de Carbono (CO2). Conciencia Tecnológica, 50-53.
  51. Mohammad, M., Isaifan, R. J., Weldu, Y. W., Rahman, M. A., & Al-Ghamdi, S. G. (2020). Progress on carbon dioxide capture, storage and utilisation. International Journal of Global Warming, 124-144.
  52. Morales, Hernán; Torres, Cristian; Muñoz, Cristian M;. (2008). Tecnologías de captura y secuestro de CO2. Santiago de Chile: Pontificia Universidad Catolica de Chile .
  53. Morrissey, E. A., & Duncan, D. W. (2011). The Concept of Geologic Carbon Sequestration. Reston: Science for a changing world .
  54. National Energy Techonology Laboratory. (2018). Review-Oxy-Combustion. National Energy Technology Laboratory.
  55. Øi, L. E., Eldrup, N., Adhikari, U., Bentsen, M. H., Badalge, J. L., & Yang, S. (2016). Simulation and cost comparison of CO2liquefaction. Energy procedia, 500-510.
  56. Orlic, B. (2009). . Geomechanical effects of CO2 storage in depleted gas reservoirs in the Netherlands: Inferences. Energia procedia, 1727-1733.
  57. Osman, A. I., Hefny, M., Abdel Maksoud, M. I., Elgarahy, A. M., & Rooney, D. W. (2020). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 797-849.
  58. Ozturk, M., Panuganti, S., Gong, K., Cox, K., Vargas, F., & Chapman, W. G. (2017). Modeling natural gas-carbon dioxide system for solid-liquid-vapor phase behavior. Journal of Natural Gas Science and Engineering, 738-746.
  59. Pandey , S. N., Kumar grupta, S., Tomar, A., & Kumar , A. (2010). Post combustion carbon capture technology. National Conference on Eco friendly
  60. Manufacturing for Sustainable Development (pág. 9). India: University Mathura.
  61. Preuss, P. (1 de Febrero de 2001). Science beat. Obtenido de Science beat: https://www2.lbl.gov/Science-Articles/Archive/sea-carb-bish.html
  62. Quintella, C. M., Hatimondi, S. A., Musse Santana , A. P., Miyazaki, S. F., SilvaCerqueira, G., & De Araujo Moreira , A. (2011). CO2 capture technologies: An overview with technology assessment based on patents and articles. Energy Procedia , 2050-2057.
  63. Rao, A., & Phadke, P. (2017). CO2 Capture and Storage in Coal Gasification Projects. Earth and Environmental Science.
  64. Raza, A., Gholami, R., Rezaee, R., Bing, C., Nagarajan, R., & Hamid, M. (2018). CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation. Petroleum, 95-107.
  65. Raza, A., Gholami, R., Rezaee, R., Rasouli, V., & Rabiei, M. (2019). Significant aspects of carbon capture and storage – A review. Petroleum, 335-340.
  66. Shabani, B., Lu, P., Kammer, R., & Zhu, C. (2022). Effects of Hydrogeological Heterogeneity on CO2 Migration and Mineral Trapping: 3D Reactive Transport Modeling of Geological CO2 Storage in the Mt. Simon Sandstone, Indiana, USA. Energies, 15(6), 2171.
  67. Syed, F. I., Muther, T., Van, V. P., Dahaghi, A. K., & Negahban, S. (2022). Numerical trend analysis for factors affecting EOR performance and CO2 storage in tight oil reservoirs. Fuel, 316, 123370.
  68. Saldivar Esparza, S., Cabrera Robles, J. S., & Reta Hernandez, M. (2017). Tecnologías de captura y almacenamiento de dióxido de carbono. Revista de ciencias Naturales y agropecuarias, 13.
  69. Seevam, P. N., Race, J. M., & Downie, M. J. (2010). Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technolog. En M. M. Maroto Valer , Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (pág. 6). Cambridge : CRC Press, Woodhead Publishing Limited.
  70. Sheps, K. M., Max, M. D., Osegovic, J. P., Tatro, S. R., & Brazel , L. A. (2009). A case for deep-ocean CO2 sequestration. Energy Procedia, 4961-4968.
  71. Shi, J Q; Durucan, S. (2005). CO2 Storage in Caverns and Mines. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 569-571.
  72. Shi, J. Q., & Durucan, S. (2005). CO2 Storage in Deep Unminable Coal Seams. Oil & Gas Science and Technology – Rev. IFP, V, 547-558.
  73. Sifat , N. S., & Haseli, Y. (2019). A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies, 34.
  74. Smart, J., Lu, G., Yan, Y., & Riley, G. (2010). Characterisation of an oxy-coal flame through digital imaging. Combustion and Flame, 1132-1139.
  75. Sood, A., & Vyas, S. (2017). Carbon Capture and Sequestration- A Review. IOP Conference Series: Earth and Environmental Science. 2nd International Conference on Green Energy Technology . Roma: IOP Publishing Ltd.
  76. Stanger , R., Wall, T., Spörl , R., Paneru, M., Grathwohl, S., Weidmann, M., . . . Santos, S. (2015). Combustión de oxicombustible para la captura de CO 2 en centrales eléctricas. Elsevier, 70.
  77. Sundquist, E., Burruss, R., Faulkner, S., Gleason, R., Harden, J., Kharaka, Y., . . . Waldrop, M. (2008). Carbon Sequestration to Mitigate Climate Change. Reston: Science for a changing world (USGS).
  78. Thanh, H. V., Yasin, Q., Al-Mudhafar, W. J., & Lee, K. K. (2022). Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers. Applied Energy, 314, 118985.
  79. Toro, G. M., Herrera, J. J., Orrego, J. A., Rojas, F., Rueda, M. F., & Manrique, E. J. (2018). Effect of ionic composition in water: oil interactions in adjusted brine chemistry waterflooding: preliminary results. Fuentes: El reventón energético, 16(2), 73-82.
  80. U.S Department of Energy. (2018). Chemical Looping Combustion. National Energy Techonology Laboratory. Obtenido de National Energy Techonology Laboratory: https://netl.doe.gov/node/7478
  81. Wang , M., Lawai, A., Stephenson , P., Sidders, J., Ramshaw, C., & Yeung , H. (2011). 1Post-combustion CO2Capture with Chemical Absorption: AState-of-the-art Review. Elsevier, 1609-1624.
  82. Wang, H., Chen, J., & Li, Q. (2019). A Review of Pipeline Transportation Technology of Carbon Dioxide. The electrochemical Society , 7.
  83. Wang, K., Xu, T., Tian, H., & Wang, F. (2016). Impacts of mineralogical compositions on different trapping. Acta Geotechnica, 1167-1188.
  84. Wang, Y., Ren, J., Hu, S., & Feng, D. (2017). Global Sensitivity Analysis to Assess Salt Precipitation for CO2 Geological Storage in Deep Saline Aquifers. Hidawi, 16.
  85. Wang, Y., Ren, J., Shaobin , H., & Di, F. (2015). CO2 Storage in Deep Saline Aquifers. 299-332: Novel Materials for Carbon Dioxide Mitigation Technology.
  86. Wang, Y., Zhao, L., Otto, A., Robinnius, M., & Stolten, D. (2017). A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Elsiever, 16.
  87. Wetenhall, B., Aghajani, H., Chalmers, H., Benson, S., Ferrari, M. C., Li, J., . . . Davison, J. (2014). Impact of CO2 impurity on CO2 compression, liquefaction and transportation. Energy Procedia , 2764-2778.
  88. Wlodek, T., & Lawsko, L. (2013). Aplication or pipelines made with thermoflex technology for natural gas and carbon dioxide transportation. AGH Drilling, oil, gas, 29.
  89. Wojnarowski, P., Czarnota, R., Wlodek, T., Janiga, D., Stopa, J., & Kosowski, P. (2019). The Possibility of CO2 Pipeline Transport for Enhanced Oil Recovery Project in Poland. AGH University of Science and Technology, 5.
  90. Xie, H., Li, X., Fang , Z., Wang , Y., Li, Q., Shi, L., . . . Hou, Z. (2014). Carbon geological utilization and storage in China. Acta Geotech, 7-27.
  91. Xu, J., Wang, Z., Qiao, Z., Wu, H., Dong, S., Zhao, S., & Wang, J. (2019). Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure. Journal of Membrane Science, 195-213.
  92. Yoo, B.-Y., Lee, S.-G., Rhee, K.-P., Na, H.-S., & Park, J.-M. (2011). New CCS system integration with CO2 carrier and liquefaction process. Elsevier, 2308-2314.
  93. Yoon, S., Ahn, J., Choi, B., & Kim, T. (2016). Effect of Carbon Capture Using Pre-combustion Technology on the Performance of Gas Turbine Combined Cycle. Trans. of the Korean Hydrogen and New Energy Society, 571-580.
  94. Yoro, K., & Daramola, M. O. (2020). CO2 emission sources, greenhousegases, and the global warming effect. En K. O. Yoro, & M. O. Daramola, Advances in Carbon Capture (págs. 3-28). Woodhead Publishing.
  95. Vidal, E., & Fontalvo, C. (2018). Alternativa para la generación de gas natural sintético a partir de una fuente de energía renovable mediante tecnología “Power to Gas” en Colombia. Fuentes: El reventón energético, 16(1), 71-79.
  96. Zhang, K., & Lau, H. C. (2022). Utilization of a high-temperature depleted gas condensate reservoir for CO2 storage and geothermal heat mining: A case study of the Arun gas reservoir in Indonesia. Journal of Cleaner Production, 343, 131006.
  97. Zevenhoven, R., & Fagerlund, J. (2010). Mineralisation of carbon dioxide (CO2). Woodhead Publishing Series in Energy, 433-462.
  98. Zhao , Z., Cui, X., Ma, J., & Li , R. (2007). Adsorption of carbon dioxide on alkali-modified zeolite. International Journal of Greenhouse Gas Control, 22.
  99. Zheng , L. (2011). Overview of oxy-fuel combustion technology for carbon dioxide (CO2) capture. Woodhead Publishing Series in Energy, 1-13.