Vol. 22 Núm. 1 (2024): Fuentes, el reventón energético
Artículos

TECNOLOGÍAS PARA EL APROVECHAMIENTO DE ENERGÍA GEOTÉRMICA EN POZOS PETROLEROS

Angie Tatiana Ortega-Ramirez
Universidad de América, Bogotá, Colombia

Publicado 2024-07-31

Palabras clave

  • Pozos Petroleros,
  • Tecnología Geotérmica,
  • Sostenibilidad Energética,
  • Energía Geotérmica,
  • Sistemas de Energía Geotérmica

Cómo citar

Ortega-Ramirez, A. T. ., & Brand-García, L. C. . (2024). TECNOLOGÍAS PARA EL APROVECHAMIENTO DE ENERGÍA GEOTÉRMICA EN POZOS PETROLEROS. Fuentes, El reventón energético, 22(1), 47–60. https://doi.org/10.18273/revfue.v22n1-2024004

Resumen

La necesidad de generar energía renovable se ha visto incrementada de manera exponencial debido al impacto ambiental negativo de las fuentes fósiles. La efectuación de una matriz energética a partir de la combinación de energía geotérmica e hidrocarburos representa una ventaja competitiva en la actualidad. Por esta razón, se efectúa la creación de un entorno sostenible que implique el uso de las fuentes de energía con mayor precaución. Para ello, se evalúan dos soluciones encaminadas a la implementación de recursos naturales como materia prima para la obtención de fuentes limpias y el incremento eficiente de tecnologías para el desarrollo de proyectos ambientalmente sostenibles. La energía geotérmica presenta una eficaz solución de la transición energética de la sociedad al ser implementado para satisfacer las necesidades diarias tales como: electricidad, calefacción y refrigeración. Una de las alternativas de obtención de energía geotérmica es el uso de pozos de petróleo para aliviar el problema energético causado por fuentes fósiles, trayendo consigo el ahorro de costos de perforación y control de la contaminación excesiva causada por la industria petroquímica. Por lo tanto, este documento de revisión se ejecutó para dar a conocer una descripción general de las diferentes tecnologías limpias de obtención de energía geotérmica mediante pozos de petróleo y "así mismo" dar un acercamiento para la implementación de estrategias sostenibles en energías renovables para el desarrollo y crecimiento económico y ambiental del sector.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Adalí, Z., Dinçer, H., Eti, S., Mikhaylov, A., & Yüksel, S. (2022). Identifying new perspectives on geothermal energy investments. In Multidimensional strategic outlook on global competitive energy economics and finance (pp. 1-11). Emerald Publishing Limited. https://www.emerald.com/insight/content/doi/10.1108/978-1-80117-898-320221002/full/html
  2. Ahmed, A. A., Assadi, M., Kalantar, A., Sliwa, T., & Sapińska-Śliwa, A. (2022). A critical review on the use of shallow geothermal energy systems for heating and cooling purposes. Energies, 15(12), 4281. https://doi.org/10.3390/en15124281
  3. Alkhasov, A. B., Alkhasova, D. A., & Ramazanov, A. Sh. (2020). Technologies of geothermal resources development in South of Russia. Geomech. Geophys. Geo-energ. Geo-resour, 6(1), 7. https://doi.org/10.1007/s40948-019-00129-w
  4. Azizi, N., Esmaeilion, F., Moosavian, S. F., Yaghoubirad, M., Ahmadi, A., Aliehyaei, M., & Soltani, M. (2022). Critical review of multigeneration system powered by geothermal energy resource from the energy, exergy, and economic point of views. Energy Science & Engineering, 10(12), 4859-4889. https://doi.org/10.1002/ese3.1296
  5. Banco Mundial. (2016, Agosto 16). Energía geotérmica: una opción costosa, pero atractiva para América Latina. https://www.bancomundial.org/es/news/feature/2016/08/16/energia-geotermica-americalatina-ventajas-retos
  6. Barasa Kabeyi, M. J., & Olanrewaju, O. A. (2022). Geothermal wellhead technology power plants in grid electricity generation: A review. Energy Strategy Reviews, 39, 100735. https://doi.org/10.1016/j.esr.2021.100735
  7. Bashir, M. A., Dengfeng, Z., Shahzadi, I., & Bashir, M. F. (2023). Does geothermal energy and natural resources affect environmental sustainability? Evidence in the lens of sustainable development. Environmental Science and Pollution Research, 30(8), 21769-21780. https://doi.org/10.1007/s11356-022-23656-8
  8. China—Consumo Total de Petróleo. (2020). KNOEMA. https://knoema.es/atlas/China/topics/Energi%CC%81a/Aceite/Consumo-dePetro%CC%81leo
  9. Chomać-Pierzecka, E., Sobczak, A., & Soboń, D. (2022). The potential and development of the geothermal energy market in Poland and the Baltic States—selected aspects. Energies, 15(11), 4142. https://doi.org/10.3390/en15114142
  10. Cui, G., Ren, S., Dou, B., & Ning, F. (2021). Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: The superiority and existing problems. Geoscience Frontiers, 12(6), 101078. https://doi.org/10.1016/j.gsf.2020.08.014
  11. Cunha, R. P., & Bourne-Webb, P. J. (2022). A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings. Renewable and Sustainable Energy Reviews, 158, 112072. https://doi.org/10.1016/j.rser.2022.112072
  12. Dávalos-Elizondo, E., Atekwana, E. A., Atekwana, E. A., Tsokonombwe, G., & Laó-Davila D. A. (2021). Medium to low enthalpy geothermal reservoirs estimated from geothermometry and mixing models of hot springs along the Malawi Rift Zone. Geothermics, 89, 101963. https://doi.org/10.1016/j.geothermics.2020.101963
  13. Ding, Y. (2020). Research on evaluation and utilization of geothermal resources in Hailaer oilfield of Daqing oilfield. AIP Conference Proceedings, 2238(1), 020019. https://doi.org/10.1063/5.0011778
  14. El mapa de los países productores de petróleo en el mundo. (2019). ABC Economía. https://www.abc.es/economia/abci-paises-mas-perjudicados-ataqueproduccionpetroleo-/
  15. Energy Sector Management Assistance Program. (2012). Geothermal handbook: planning and financing power generation. The World Bank Group.
  16. Fan, G., Gao, Y., Ayed, H., Marzouki, R., Aryanfar, Y., Jarad, F., & Guo, P. (2021). Energy and exergy and economic (3E) analysis of a two-stage organic Rankine cycle for single flash geothermal power plant exhaust exergy recovery. Case Studies in Thermal Engineering, 28, 101554. https://doi.org/10.1016/j.csite.2021.101554
  17. Gischler, C., Perks, M., González, C., Correa, C., Aragón, R., Haratsu, M., García Fernandez, J., & Siroit, G. (2020). Harnessing geothermal potential in Latin America and The Caribbean: A perspective on the road ahead. http://dx.doi.org/10.18235/0002702
  18. Gkousis, S., Welkenhuysen, K., & Compernolle, T. (2022). Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions. Renewable and Sustainable Energy Reviews, 162, 112430. https://doi.org/10.1016/j.rser.2022.112430
  19. Hossain, S., Hossain, I., Jahangir, T., & Hasan, A. (2021). Direct Utilization of Geothermal Energy with Trends and Potential Role in a Sustainable Future Outgrowth. ICRRD Qual. Ind. Res. J. 2021, 2(1), 189-204
  20. IRENA. (2022). Renewable capacity statistics 2022. https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022-ES
  21. International Energy Agency. (2021). Renewables 2021 – Analysis and forecast to 2026. https://www.iea.org/reports/renewables-2021
  22. Islam, M. T., Nabi, M. N., Arefin, M. A., Mostakim, K., Rashid, F., Hassan, N. M. S., Raham S. M. A., McIntosh, S., Mullins, B.J., & Muyeen, S. M. (2022). Trends and prospects of geothermal energy as an alternative source of power: A comprehensive review. Heliyon, 8(12), e11836. https://www.cell.com/heliyon/pdf/S2405-8440(22)03124-3.pdf
  23. Kaczmarczyk, M., Tomaszewska, B., & Operacz, A. (2020). Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System. Energies, 13(10), 2495. https://doi.org/10.3390/en13102495
  24. Karayel, G. K., Javani, N., & Dincer, I. (2022). Effective use of geothermal energy for hydrogen production: a comprehensive application. Energy, 249, 123597. https://doi.org/10.1016/j.energy.2022.123597
  25. Kazi, A., Riyaz, M., Tang, X., Staack, D., & Tai, B. (2020). Specific cutting energy reduction of granite using plasma treatment: A feasibility study for future geothermal drilling. Procedia Manufacturing, 48, 514-519. https://doi.org/10.1016/j.promfg.2020.05.077
  26. Kumar, L., Hossain, M. S., Assad, M. E. H., & Manoo, M. U. (2022). Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review. Energies, 15(23), 9058. https://doi.org/10.3390/en15239058
  27. Li, Z., Luo, Z., Wang, Y., Fan, G., & Zhang, J. (2022). Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renewable Energy, 184, 564-576. https://doi.org/10.1016/j.renene.2021.11.112
  28. Lund, J. W., & Toth, A. N. (2021). Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 90, 101915. https://doi.org/10.1016/j.geothermics.2020.101915
  29. Majumdar, D., & Devi, A. (2021). Oilfield geothermal resources of the Upper Assam Petroliferous Basin, NE India. Energy Geoscience, 2(4), 246-253. https://doi.org/10.1016/j.engeos.2021.07.002
  30. Ministerio de Minas y Energía (2021, marzo 24). Inicia el primer piloto para la generación de energía geotérmica en Casanare. https://www.pactoglobalcolombia.org/news/inicia-el-primer-piloto-para-la-generacion-de-energia-geotermica-en-casanare.html
  31. Mott, A., Baba, A., Mosleh, M. H., Ökten, H., Babaei, M., Gören, A., Feng, C., Recepoğlu, Y., Uzelli, T., Uytun, H., Morata, D., Yüksel, A., & Sedighi, M. (2022). Boron in geothermal energy: Sources, environmental impacts, and management in geothermal fluid. Renewable & Sustainable Energy Reviews, 167, 112825. https://doi.org/10.1016/j.rser.2022.112825
  32. Okoroafor, E. R., Smith, C. M., Ochie, K. I., Nwosu, C. J., Gudmundsdottir, H., & Aljubran, M. J. (2022). Machine learning in subsurface geothermal energy: Two decades in review. Geothermics, 102, 102401. https://doi.org/10.1016/j.geothermics.2022.102401
  33. Parikhani, T., Delpisheh, M., Haghghi, M. A., Holagh, S. G., & Athari, H. (2021). Performance enhancement and multi-objective optimization
  34. of a double-flash binary geothermal power plant. Energy Nexus, 2, 100012. https://doi.org/10.1016/j.nexus.2021.100012
  35. Prajapati, M., Shah, M., & Soni, B. (2022). A review on geothermal energy resources in India: past and the present. Environmental Science and Pollution Research, 29(45), 67675-67684. https://link.springer.com/article/10.1007/s11356-022-22419-9
  36. Ramirez, J., Velázquez, D. A. A., & Vélez-Zapata, C. (2021). Collaboration and Investment Opportunities for Danish Organizations in Colombia's Green Transition: 2021. Centre for Business and Development Studies.
  37. Richter, A. (21 de junio de 2021). Three geothermal power pilot projects developed in Colombia. Think Geoenergy. https://www.thinkgeoenergy.com/three-geothermal-power-pilot-projects-developed-incolombia/
  38. Richter, A. (5 de agosto de 2022). Colombia releases regulations on utlisation of geothermal energy. Think Geoenergy. https://www.thinkgeoenergy.com/colombia-releases-regulations-on-utlisation-of-geothermal-energy/
  39. Richter, A. (4 de septiembre de 2022). Geothermal energy could play a huge role in the provision of energy to the megacities of this world, e.g. covering all electricity (and more) to Bogota, capital of Colombia. https://www.thinkgeoenergy.com/city-of-bogota-colombia-could-tap-geothermal-for-electricity/
  40. Romanov, D., & Leiss, B. (2022). Geothermal energy at different depths for district heating and cooling of existing and future building stock. Renewable and Sustainable Energy Reviews, 167, 112727. https://doi.org/10.1016/j.rser.2022.112727
  41. Salazar, S. S., Muñoz, Y., & Ospino, A. (2017). Analysis of geothermal energy as an alternative source for electricity in Colombia. Geothermal Energy, 5(1), 27. https://doi.org/10.1186/s40517-017-0084-x
  42. Santos, L., Taleghani, A. D., & Elsworth, D. (2022). Repurposing abandoned wells for geothermal energy: Current status and future prospects. Renewable Energy, 194, 1288-1302. https://doi.org/10.1016/j.renene.2022.05.138
  43. Sharmin, T., Khan, N. R., Akram, M. S., & Ehsan, M. M. (2023). A State-of-the-art Review on for Geothermal Energy Extraction, Utilization, and Improvement Strategies: Conventional, Hybridized, and Enhanced Geothermal Systems. International Journal of Thermofluids, 100323. https://doi.org/10.1016/j.ijft.2023.100323
  44. Soltani, M., Kashkooli, F. M., Fini, M. A., Gharapetian, D., Nathwani, J., & Dusseault, M. B. (2022). A review of nanotechnology fluid applications in geothermal energy systems. Renewable and Sustainable Energy Reviews, 167, 112729. https://doi.org/10.1016/j.rser.2022.112729
  45. Spijkerboer, R. C., Turhan, E., Roos, A., Billi, M., Vargas-Payera, S., Opazo, J., & Armiero, M. (2022). Out of steam? A social science and humanities research agenda for geothermal energy. Energy Research & Social Science, 92, 102801. https://doi.org/10.1016/j.erss.2022.102801
  46. The International Energy Agency. (s. f.). IEA-Electricity Market Report—July 2022. https://www.iea.org/reports/electricity-market-report-july-2022/executive-summary
  47. The World Bank. (2020, noviembre 16). The Global Geothermal Development Plan: Mitigating Upstream Cost and Risk. https://www.worldbank.org/en/results/2020/11/10/the-global-geothermal-development-plan-mitigating-upstream-cost-and-risk
  48. Umar, M., Awosusi, A. A., Adegboye, O. R., & Ojekemi, O. S. (2023). Geothermal energy and carbon emissions nexus in leading geothermal-consuming nations: evidence from nonparametric analysis. Energy & Environment, 0958305X231153972. https://doi.org/10.1177/0958305x231153972
  49. Watson, S., Falcone, G., & Westaway, R. (2020). Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential. Energies, 13(14), 3541. https://doi.org/10.3390/en13143541
  50. Vargas, C. A., Caracciolo, L., & Ball, P. J. (2022). Geothermal energy as a means to decarbonize the energy mix of megacities. Communications Earth & Environment, 3(1), 66. https://www.nature.com/articles/s43247-022-00386-w
  51. Yilmaz F. (2021). Performance and environmental impact assessment of a geothermal-assisted combined plant for multi-generation products. Sustainable Energy Technologies And Assessments, 46, 101291. https://doi.org/10.1016/j.seta.2021.101291
  52. Yudha, S. W., Tjahjono, B., & Longhurst, P. (2022). Unearthing the dynamics of Indonesia’s geothermal energy development. Energies, 15(14), 5009. https://doi.org/10.3390/en15145009
  53. Xu, Y., Li, Z., Chen, Y., Jia, M., Zhang, M., & Li, R. (2022). Synergetic mining of geothermal energy in deep mines: An innovative method for heat hazard control. Applied Thermal Engineering, 210, 118398. https://doi.org/10.1016/j.applthermaleng.2022.118398