Vol. 13 Núm. 2 (2015): Fuentes, el reventón energético
Artículos

Biocombustibles líquidos en Colombia y su impacto en motores de combustión interna. Una revisión

Johana Marcela Amaris
Escuela de ingeniería Mecánica, universidad industrial de santander, uis, Carrera 27 calle 9, Bucaramanga, Colombia.
Diego Antonio Manrique
escuela de ingeniería Mecánica, universidad industrial de santander, uis, Carrera 27 calle 9, Bucaramanga, Colombia.
Julian Ernesto Jaramillo
escuela de ingeniería Mecánica, universidad industrial de santander, uis, Carrera 27 calle 9, Bucaramanga, Colombia.

Publicado 2015-12-03

Palabras clave

  • Energía Renovable,
  • Biocombustibles,
  • Bioetanol,
  • Biodiesel,
  • Motores

Cómo citar

Amaris, J. M., Manrique, D. A., & Jaramillo, J. E. (2015). Biocombustibles líquidos en Colombia y su impacto en motores de combustión interna. Una revisión. Fuentes, El reventón energético, 13(2), 23–34. https://doi.org/10.18273/revfue.v13n2-2015003

Resumen

En los últimos siglos, el hombre se ha visto obligado a recurrir a diversas fuentes para garantizar sus necesidades energéticas. es por esto, que a través de los años ha desarrollado tecnologías para explotar los combustibles fósiles, sin tener en cuenta el deterioro generado en el medio ambiente. esta explotación indiscriminada ha llevado a los recursos naturales al borde de su agotamiento, lo cual ha impulsado el estudio de alternativas energéticas “amigables” con el medio ambiente. en este sentido, los biocombustibles se presentan como una alternativa viable a los combustibles fósiles. Éste artículo está enfocado en el estudio de los biocombustibles líquidos (bioetanol y biodiesel) por medio de una revisión bibliográfi ca detallada con el propósito de establecer el estado actual de esta tecnología en Colombia. además, se han estudiado los impactos que su uso genera en los motores de combustión interna, específi camente los de ciclo Otto y Diésel.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

1. Agudelo, A., Agudelo, J., & Benjumea, P. (2007). Diagnóstico de la combustión de biocombustibles en motores. Revista Facultad de Ingeniería Universidad de Antioquia, 45, 41-53.

2. Alam, F., & Datea, A. (2012). Biofuel from algae, Is it a viable alternative? Procedia Engineering, 49, 221- 227.

3. Atlas de la agroenergía y los biocombustibles en las américas: Etanol. (2008). San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura.

4. A literature review based assessment on the impacts of a 20% Ethanol-Gasoline fuel blend on the Australian vehicle fleet. (2002). Australia: Orbital Engine Company.

5. Behrentz, E. (2006). Beneficios ambientales asociados con el uso de combustibles alternativos. Bogotá, Colombia: XIII Conferencia Energética Colombiana.

6. Benavides, A., Benjumea, P., & Pashova, V. (2007). El biodiesel de aceite de higuerilla como combustible alternativo en motores diésel. Dyna, 74, 141-150.

7. Bernand, E. (2006). Biodiesel: Los aspectos mecánicos en los vehículos. San José, Costa Rica: Autor.

8. Bigogno, C., & Khozin-Goldberg, I. (2002). Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry, 60, 497-503.

9. Brennan, L., & Owende, P. (2010). Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and coproducts. Renewable and Sustainable Energy Reviews, 14, 557- 577.

10. Boyle, G., Everett, B., & Ramage, J. (2003). Energy systems and sustainability, power for a sustainable future. Milton Keynes, UK: Oxford.

11. Cepeda, R., & Ochoa, L. (2004). Obtención de combustibles sintéticos mediante la reacción de Fischer Tropsch, empleando catalizadores de hierro. Revista Colombiana de Química, 33, 2357-3791.

12. Ceviz, A., & Ksel, Y. (2004). Effect of Ethanolunleaded gasoline blends on cyclic variability and emissions in an SI engine. Applied Thermal Engineering, 25, 917-925.

13. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.

14. Daroch, M., Geng, S., & Wang, G. (2013). Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 102, 1371–1381.

15. Dragone, G., & Fernandes, B. (2010). Third generation biofuels from microalgae. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 1355-1366.

16. Dufey, A. (2006). Producción y Comercio de biocombustibles y desarrollo sustentable: Los grandes temas. London, UK: International, Institute for Environment and Development.

17. Eichenberger, W., & Gribi, C. (1997). Lipids of Pavlova Lutheri: cellular site and metabolic role of DGCC. Phytochemistry, 45, 1561-1567.

18. Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92, 405-416.

19. Ganduglia, F. (2009). Manual de biocombustibles. San José, Costa Rica: Instituto Interamericano de Cooperación para la Agricultura (IICA).

20. Goméz, J., Samaniego, J., & Antonissen, M. (2008). Consideraciones ambientales entorno a los biocombustibles líquidos. CEPAL, 137, 1-52.

21. Hansen, A., Zhang, Q., & Lyne, P. (2005). EthanolDiesel fuel blends a Review. Bioresource Technology, 96, 277-285.

22. He, B. (2003). A study on emissions characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric environment, 37, 949-957.

23. He, B. (2003). The effect of ethanol blended diesel fuels an emissions from a diesel engine. Atmospheric environment, 37, 4965- 4971.

24. Herrera, B., & otros. (2009). Biocombustibles en Colombia. Bogotá, Colombia: Unidad de Planeación Minero Energética, UPME.

25. Hsieh, W. (2002). Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment, 36, 403- 410.

26. Methanol Institute. (2011). Manual de manipulación segura del metanol [En línea]. California, USA: Autor.

27.Jimenez, I. (2008). Transferencia tecnológica sobre las ventajas y desventajas de la utilización de biodiesel. San José, Costa Rica: Instituto Nacional de Aprendizaje.

28. Machado, C. (2010). Situación de los biocombustibles de 2da y 3ra generación. Brasil: Embrapa.

29. MacLean, H., & Lave, L. (2003). Evaluating automobile fuel/propulsion system technologies. Progress in energy and combustion science, 29, 1-69.

30. Mantilla, J. (2010). Modelado de la combustión de mezclas gasolina-etanol en motores de combustión interna. Tesis doctoral. Medellín, Colombia: Universidad Nacional de Colombia.

31. Ministerio de Minas y Energía. (2001). Ley 693 de Septiembre 19 de 2001 [En línea]. Recuperado de https://www.minminas.gov.co/ documents/10180//23517//21462-3660.pdf.

32. Ministerio de Minas y Energía. (2013). Hidrocarburos [En línea]. Recuperado de https://www.minminas. gov.co/documents/10180/614096/2-Hidrocarburos. pdf/75855d82-def9-4ccb-9fe4-2d4ee97f9123.

33. Liang, Y., & Sarkany, N. (2010). Use of sweetsorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol, 101, 3623- 3627.

34. Ocampo, W. (2006). Es la biogasolina una alternativa ambiental en Colombia. Medellín, Colombia: Facultad de Ingeniería, Universidad de Antioquia.

35. Pérez, A. (2010). Biocombustibles en Suramérica: referentes normativos y legislación actual. Derechos y Valores, 13, 215-232.

36. Piamba, O., & Collazos, O. (2007). Desempeño del motor utilizando como combustible mezcla de etanol anhidro y gasolina en relación de 10% en Volumen E10. Bogotá, Colombia: Facultad de Ingeniería, Universidad Nacional de Colombia.

37. Poulopolus, S., Samaras, D., & Philippopoulos, C. (2001). Regulated and unregulated emissions from an internal combustion engine operating on ethanolcontaining fuels. Atmospheric Environment, 35, 4399-4406.

38. Rodríguez, M. (2000). La biodiversidad en Colombia [En línea]. Recuperado de http://www. manuelrodriguezbecerra.org/bajar/biodiversidad.pdf

39. Rodriguez, G., & Ribeiro, M. (2009). Estudio comparado entre el combustible diesel y biodiesel. Argentina: Instituto Nacional de Tecnología Industrial.

40. Rosillo-Calle, F., & Cortez, L. (1998). Towards Proalcool lida Reviews of the Brazilian bioetanol. Programme biomass and bioenergy, 14, 115-124.

41. Sanchez, O., & Cardona, C. (2006). Producción de alcohol carburante, una alternativa para el desarrollo agroindustrial. Manizales, Colombia: Universidad Nacional de Colombia.

42. Schenk, P., & Hall, T. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy, 1, 20–43.

43. Scott, S., & Davey, M. (2010). Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21, 277-286.

44. Shing, L., Muttamara, S., & Lantanakulb, P. (2002). Aplicability of gasoline containing ethanol as Thailands alternative fuel to curb toxic VOC pollutants from automobile emission. Atmospheric Environment, 36, 3495-3503.

45. Spolaore, P., & Joannis-Cassan, C. (2006). Commercial application of microalgae. J Biosci Bioeng, 101, 87-96.

46. Stratta, J. (2000). Biocombustibles: Los aceites vegetales como constituyentes principales del biodiesel. Argentina: Bolsa de Comercio de Rosario.

47. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16, 4316-4342.

48. Wu, C. (2004). The influence or air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmosfheric Environment, 38, 7093-7100.

49. Yuksel, F., & Yuksel, B. (2004). The uses of ethanolgasoline blend as a fuel in an SI engine. Renewable energy, 29, 1181-1191.

50. Zapata, S., Franco, C., & Dyner, I. (2011). Una aproximación desde la dinámica de sistemas a la liberación del mercado de los biocombustibles en Colombia. Bogotá, Colombia: Universidad Colegio Mayor de Nuestra Señora del Rosario.