Vol. 15 Núm. 1 (2017): Fuentes, el reventón energético
Artículos

Predicción de flujo multifásico en sistemas de recolección de crudo: descripción de requerimientos

Gustavo Andrés Valle Tamayo
Petroleum Consulting Company.
Biografía
Felipe Romero Consuegra
Petroleum Consulting Company.
Biografía
Manuel Enrique Cabarcas Simancas
Petroleum Consulting Company.
Biografía

Publicado 2017-06-01

Cómo citar

Valle Tamayo, G. A., Romero Consuegra, F., & Cabarcas Simancas, M. E. (2017). Predicción de flujo multifásico en sistemas de recolección de crudo: descripción de requerimientos. Fuentes, El reventón energético, 15(1), 87–99. https://doi.org/10.18273/revfue.v15n1-2017008

Resumen

Durante los últimos 60 años numerosos autores se han dedicado al estudio del comportamiento de flujo multifásico en tuberías. En la literatura existe un extenso número de correlaciones y modelos para la predicción y evaluación de gradientes de presión, patrones de flujo, holdup de líquido, y propiedades del fluido. El cálculo fiable de escenarios a partir de un modelo detallado y riguroso, garantiza el éxito de la operación. La toma de decisiones sin un conocimiento previo de los diversos modelos involucrados en la predicción del comportamiento de flujo, ocasiona estimaciones inadecuadas, y gastos innecesarios en recurso humano y de cómputo. Esto ocurre en muchas ocasiones debido a la falta de conocimiento de los parámetros que afectan los modelos hidráulicos, y a la inexistencia de una metodología que modele estos perfiles; con el fin de posteriormente poder predecir su comportamiento de forma acertada. En este trabajo se presenta una revisión de los métodos más relevantes en la industria del petróleo para caracterizar el flujo multifásico. Además, se propone una metodología general para el uso apropiado de los diversos simuladores en estado estable que existen comercialmente.


Palabras Clave: Aseguramiento de Flujo, Flujo Multifásico, Estado Estable.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Ahmed, M. y Mohammed, A., (2014). A comprehesive Study on the current Pressure Drop Calculation in Multiphase Vertical Wells; Current trends and Future Prospective. s.l.:Journal of Applied Sciences, vol 23, pp 3162-3171, doi: 10.3923/jas.2014.3162.3171.
  2. Ansari, A. y otros, (1994). A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores. s.l.:SPE Prod. Facil. J., 9 (2), 143−151.
  3. Arthur, C., Russell, L. y Adames, P., (2016). An Investigation of Buried Pipe Outer Heat Transfer Coefficient Correlatons. s.l.:BHR Group, 2016-179 BHR.
  4. Asheim, H., (1986). MONA, an Accurate Two-Phase Well Flow Model Based on Phase Slippage.s.l.:Society of Petroleum Engineers, SPE.
  5. Aziz, K., Govier, G. y Forgarasi, M., (1972). Pressure Drop in Wells Producing Oil and Gas. s.l.:J. Can. Pet. Technol., 11 (3), 38−48.
  6. Baker, O., (1954). Design of Pipelines for Simultaneous Flow of Oil and Gas. s.l.:OGJ. V. 53.
  7. Baroczy, C., (1966). Chem.Eng. Prog. s.l.:s.n.
  8. Baxendell, P. y Thomas, R., (1961). The Calculation of Pressure Gradients In High-Rate Flowing Wells. s.l.:J. Pet. Technol., 13 (10), 1023-1028.
  9. Beggs, H. y Brill, J., (1973). A Study of Two-Phase Flow in Inclined Pipes. s.l.:J. Pet. Technol., Trans., AIME, 25 (5), 607−617.
  10. Bendiksen, K., Malnes, D., Moe, R. y Nuland, S., (1991). The Dynamic Two-Fluid Model OLGA: Theory and Application. s.l.:SPE Prod. Eng, 6 (2), 171−180 (SPE Paper 19451).
  11. Bergman, D. y Sutton, R., (2009). A Consistent and Accurate Dead-Oil-Viscosity Method. s.l.:Society of Petroleum Engineer, SPE 110194-PA.
  12. Bertuzzi, A., Tek, M. y Poettman, F., (1956). Simultaneous Flow of Liquid and Gas Through Horizontal Pipe. s.l.:Society of Petroleum Engineers, SPE 544-G.
  13. Bratland, O., (2008). Update on commercially available flow assurance software tools: What they can and cannot do and how reliable they are. Kuala Lumpur: 4th Asian Pipeline Conference & Exposition 2008.
  14. Brill, J. y Arirachakaran, S., (1992). State-of-the-Art in Multiphase Flow. s.l.:J.Pet. Technol., 538-541, Society of Petroleum Engineers, SPE, No. 23835.
  15. Chawla, J., (1969). Liquid Content in Pipes in Two-Phase Flow of Gas-Liquid Mixtures. s.l.:Chimie Ingenieur Technik,69.
  16. Chenoweth, J. y Martin, M., (1955). Turbulent Two-Phase FLow. s.l.:Petr.Ref.
  17. Chierici, G., Ciucci, G. y Sclocchi, G., (1974). Two-Phase Flow in Oil Wells-Prediction of Pressure Drop. s.l.:J.Pet.Tech. pp 927-937; Trans., AIME, 257.
  18. Chisholm, D., (1967). A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow. s.l.:Int. J. Heat and Mass Transfer, 10.
  19. Chukwuemeka, O., (2010). Steady-State Heat Transfer Models For Fully and Partially Buried Pipelines. s.l.:Society of Petroleum Engineers, SPE 131137.
  20. Danielson, T., Bansal, K., Hansen, R. y Leporcher, E., (2005). LEDA: The Next Multiphase Flow Performance Simulator. s.l.:In Proceedings of the 9th International Conference on Multiphase Technology, Barcelona, Spain; BHR Group Limited: Cranfield, Bedfordshire,U.K., pp 477−492.
  21. Darcy, H., (1857). Recherches Experimentales Relatives au Mouvement de L’Eau dans les Tuyaux. s.l.:Vol. 2; Mallet−Bachelier: Paris, 268 pp.
  22. Di Lullo, A., (2012). Discover a Career: Flow Assurance. s.l.:Society of Petroleum Engineer, SPE 0112024-TWA.
  23. Dukler, A., (1969). Gas Liquid Flow in Pipelines: I. Research Results. s.l.:AGA-API Project NX-28.
  24. Duns, H. y Ros, N., (1963). Vertical Flow of Gas and Liquid Mixtures in Wells. s.l.:In Proceedings of the Sixth World Petroleum Congress, Frankfurt, Germany; pp 451−465 (Section II, Paper 212. PD6).
  25. Eaton, B., Andrews, D., Knowles, C. y Brwon, K., (1967). The Prediction of Flow Patterns, Liquid Holdup and Pressure Losses Occurring During Continuous Two-Phase Flow in Horizontal Pipelines. s.l.:J. Pet. Technol, 19 (6), 815−828 (SPE Paper 1525).
  26. Ellul, I., Saether, G. y Shippen, M., (2004). The Modeling of Multiphase Systems Under Steady State and Trasient Conditions. s.l.:In Proceedings of the Pipeline Simulation Interest Group (PSIG), 36th Annual Meeting,Palm Springs, CA.
  27. Fayed, A. y Otten, L., (1983). Comparing Measured with Calculated Multiphase Flow Pressure Drop. s.l.:PennWell Publishing Corp., p 136-140.
  28. Fernandez, R., Semiat, R. y Dukler, A., (1983). Hydrodynamic Model For Gas- Liquid Slug Flog in Vertical Tubes. s.l.:AIChE J, vol. 29, pp. 981-989.
  29. Flanigan, O., (1958). Effect of Uphill Flow on Pressure Drop in Design of Two-Phase Gathering Systems. s.l.:Oil Gas J.
  30. González, C. y González, Y., (2013). Transferencia de Calor en Pozos Productores de Hidrocarburos. s.l.:Tesis de Grado. Universidad Nacional Autónoma de México.
  31. Gould, T., (1979). Compositional Two-Phase Flow in Pipelines. s.l.:Society of Petroleum Engineers, SPE 5685.
  32. Gray, H., (1974). Subsurface Controlled Safety Valve Sizing Computer Program, Appendix B. In Vertical Flow Correlation in Gas Wells, User Manual for API 14BM. s.l.:API: Dallas, TX.
  33. Gregory, G., Mandhane, J. y Aziz, K., (1974). Some Design Considerations of Two-Phase Flow in Pipes. s.l.:Petroleum Society of Canada, PETSOC 750107.
  34. Guzhov, A., (1967). A Study of Trnsprtation in Gas-Liquid Systems. s.l.:10 th INt. Gas Conf., Hamburg-Germany.
  35. Hagedorn, A. y Brown, K., (1965). Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small- Diameter Vertical Conduits. s.l.:J. Pet. Technol, 17 (4), 475−484.
  36. Hasan, A. y Kabir, S., (1988). A Study of Multiphase Flow Behavior in Vertical Wells. s.l.:SPE Prod. Eng., 3 (2), 263−272 (SPE Paper 15138).
  37. Holmes, J., (1977). Description of the Drift Flux Model in the LOCA Code Relap-UK. s.l.:Inst. Mech. End. 103−108 (Paper No. C206/77).
  38. Hoogendorn, C., (1959). Gas-Liquid Flow in Horizontal Pipes. s.l.:Chem. ENg. Sci., 9.
  39. Hughmark, G., (1962). Holdup in Gas-Liquid Flow. s.l.:Chem. Eng. Prog. 68.
  40. Jerez-Carrizales, M., Jaramillo, J. y Fuentes, D., (2015). Prediction of Multiphase Flow in Pipelines: Literature Review. s.l.:Ingenieria y Ciencia, vol. 11, No. 22, pp. 213-233, doi:10.17230/ingciencia.11.22.10.
  41. Lawson, J. y Brill, J., (1973). A statistical Evaluation of Methods used to Predict Pressure Losses for Multiphase FLow in Vertical Oil Well Tubing. s.l.:Society of Petroleum Engineers, SPE 4267.
  42. Lockhart, R. y Martinelli, R., (1949). Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes. s.l.:Chem. Eng. Progress, 45 (1), 39−48.
  43. Mandhane, J., Gregory, G. y Aziz, K., (1974). Critical Evaluation of Holdup Prediction Methods for Gas-Liquid Flow in Horinzontal Pipes. s.l.:Society of Petroleum Engineers, SPE 5140.
  44. Mandhane, J., Gregory, G. y Aziz, K., (1976). Critical Evaluation of Friction Pressure Drop Prediction Methods for Gas-Liquid Flow in Horizontal Pipes. s.l.:Society of Petroleum Engineers, SPE 6036.
  45. Moody, L., (1944). Friction Factors for Pipe Flow. s.l.:Trans. ASME 66 (8), 671−684.
  46. Moradi, B. y otros, (2010). Buble point Pressure Empirical Correlation. s.l.:Society of Petroleum Engineers, SPE 132756-MS.
  47. Mukherjee, H. y Brill, J., (1985). Pressure Drop Correlations for Inclined Two-Phase Flow. s.l.:J. Energy Resources Technol., Trans.,ASME; 107, (December), 549−468.
  48. Orkiszewski, J., (1967). Predicting Two-Phase Pressure Drops in Vertical Pipes. s.l.:J. Pet. Technol., Trans. AIME, 19 (6), 829−838 (SPE Paper 1546-PA).
  49. Ortiz, G. y Jaimes, K., (2015). Desarrollo de un Software para el Modelamiento del Flujo Multifásico en Tubería Vertical y Horizontal. s.l.:Tesis de Grado. Escuela de Ingeniería de Petróleos.Universidad Industrial de Santander.
  50. Osman y El-Feky, (1985). Design Methods for Two-Phase Pipelines Compared, Evaluated. s.l.:OGJ.
  51. Petalas, N. y Aziz, K., (2000). A Mechanistic Model for Multiphase Flow in Pipes. s.l.:J. Can. Pet. Technol., 39 (6), 43−55.
  52. Poettmann, F. y Carpenter, P., (1952). Multiphase Flow of Gas, Oil and Water Through Vertical Flow Strings. s.l.:Drill. Prod. Pract., pp 257.
  53. Pressman, R., (2009). Software engineering: A Practitioner´s Approach. s.l.:McGraw-Hill. 7th Edition.
  54. Reynolds, O., (1883). An Experimental INvestigation of the Circum-stances Which Determine Wheter the motion of Water Shall Be Direct or Sinuous, and of the Law of Resisteance in Parallel Channels. s.l.:Philos. Trans. R. Soc., 174, pp. 935-982.
  55. Romero, A. y Salazar, D., (2007). Herramienta Computacional para el Estudio del Comportamiento del Flujo Multifásico con Transferencia de Calor en Líneas de Flujo. s.l.:Tesis de Grado. Universidad Central de Venezuela.
  56. Rott, N., (1990). Note on the History of the Reynolds Number. s.l.:Ann. Rev. Fluid Mech, pp. 1-11.
  57. Shi, H. y otros, (2005). Drift-Flux Modeling of Two-Phase Flow in Wellbores. s.l.:Society Petrleoum Engineers, SPE 84228-PA, 10 (1), 24−33.
  58. Shippen, M. y Bailey, W., (2012). Steady-State Multiphase Flow-Past, Present, and Future, with a Perspective on Flow Assurance. s.l.:American Chemical Society, ACS.
  59. Shoham, O., (2006). Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes. s.l.:Society of Petroleum Engineers, SPE, 408 pp.
  60. Taitel, Y. y Dukkler, A., (1976). A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas−Liquid Flow. s.l.:AIChE J., 22 (1), 47−55.
  61. Valle, G., Romero, F., Mendoza, L. y Osorio, D., (2017). Empirical PVT Correlations Applied For Colombian Crude Oils: A New Approach. s.l.:Society of Petroleum Engineers, SPE 185565.
  62. Vohra, I., Hernandez, F., Marcano, N. y Brill, J., (1975). Comparison of Liquid Holdup and Friction Factor Correlations for Gas-Liquid Flow in Horizontal Pipes. s.l.:Society of Petroleum Engineers, SPE 4690.
  63. Vohra, I., Robinson, J. y Brill, J., (1974). Evaluation of Three New Methods For Predicting Pressure Losses In Vertical Oilwell Tubing. s.l.:Society of Petroleum Engineers, SPE 4689.
  64. Weisbach, J., (1845). Lehrbuch der Ingenieur- und Maschinen-Mechanik Vol. 1 Theoretische Mechanik. s.l.:Vieweg und Sohn: Braunschwieg, Germany, 535 pp.
  65. Wook, D. y otros, (2014). Effect of Buried Depth on Steady-State Heat-Transfer Characteristics for Pipeline-Flow Assurance. s.l.:Society of Petroleum Engineers, SPE 166595.
  66. Xiao, J., Shoham, O. y Brill, J., (1994). A Comprehensive Mechanistic Model for Two-Phase Flow in Pipelines. s.l.:Presented at the SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 23−25, SPE Paper 20631.
  67. Xiao, J.-J. y Shoup, G., (1998). Sizing Wet- Gas Pipelines and Slug Catchers with Steady-State Multiphase Flow Simulations. s.l.:J. Energy Resources Technology, Trans. ASME, vol. 2, pp. 106-111.
  68. Zhang, H., Wang, Q. y Brill, J., (2003). A Unified Mechanistic Model for Slug Liquid Holdup and Transition Between Slug and Dispersed Bubble Flows. s.l.: Int. J. Multiphase Flow, 29 (1), 97−107.
  69. Zhang, H., Wang, Q., Sarica, C. y Brill, J., (2006). Unified Model of Heat Transfer in Gas/Liquid Pipe Flow. s.l.:Society of Petroleum Engineers, SPE 90459.
  70. Zuber, N. y Findlay, J., (1965). Average Volumetric Concentration in Two-Phase Flow Systems. s.l.:J. Heat Transfer, Trans. ASME, Ser. C, 26 (3), 453 - 468.