Vol. 17 No. 2 (2019): Fuentes, el reventón energético
Articles

Experimental protocol for evaluation of micro-emulsions that modify the mojability in porous media. Application to colombian fields

Manuel G. Jaimes
Ecopetrol
Jorge A Rojas
Ecopetrol
Milton J. Rodríguez
Ecopetrol
Richard D. Zabala
Ecopetrol
Ricardo Dorado
Universidad Industrial de Santander

Published 2019-06-30

Keywords

  • Active Aquifer,
  • Contact Angle,
  • Formation Damage,
  • Humidity,
  • Microemulsions,
  • Mojability,
  • Mobility,
  • Relative Permeability,
  • Capillary Pressure,
  • Well Productivity,
  • Interfacial Tension,
  • Viscosity
  • ...More
    Less

How to Cite

Jaimes, M. G., Rojas, J. A., Rodríguez, M. J., Zabala, R. D., & Dorado, R. (2019). Experimental protocol for evaluation of micro-emulsions that modify the mojability in porous media. Application to colombian fields. Fuentes, El reventón energético, 17(2), 63–75. https://doi.org/10.18273/revfue.v17n2-2019010

Abstract

Reserves of light crude oil are decreasing in contrast to the discoveries of heavy crude which is why attention has been focused on this type of hydrocarbons.

Colombia has a high potential in the heavy-crude development especially in the areas of the Llanos Orientales Basin (Campos: Rubiales, Castilla, Chichimene, Apiay, Suria) which have been produced in recent years to achieve that the 60% of the national production is associated with this type of resource.

Heavy-oil production is not easy due to its high viscosity which causes low oil mobility and early water production in reservoirs with active aquifers.

One of the main techniques used to increase productivity in heavy crude oil fields is the matrix stimulation of wells through the injection of treatments that positively alter the relative permeability curves (alteration of wettability) and thus improve the mobility of these crude oils. However, understanding the formation wettability is essential to optimize oil recovery. To assume that a formation is wettable by water, when in reality it is not, can cause irreversible damage to the reservoir.

Therefore, the current study focused on developing and implementing a protocol at the laboratory level, to evaluate water-based matrix stimulation treatments that have ability to reverse natural oil wettability (generally to the oil, due to high affinity between oil and rock minerals of reservoir) towards water wettability, which leads to an improvement of relative permeability to crude oil.

The experimental protocol was implemented at laboratory level for the Castilla Oilfield (Llanos Orientales basin in Colombia) and focused on three major stages.

1. Stage 1: Basic characterization of treatment fluids.

2. Stage 2: Fluid-fluid evaluation and rheological behavior of formation fluids Vs. Chemical treatments.

3. Stage 3: Evaluation of effect on wettability (modification of contact angles and relative permeability).

The main conclusions and recommendations obtained in this study are the following:

1. A suitable experimental protocol was developed for evaluation of microemulsions and / or mobility enhancing additives.

2. Implementation of protocol allowed selecting the best treatment of alteration of wettability for the Castilla oilfield.

3. The components of the oil, the brine chemistry, the mineral surface, the temperature, the pressure, the interfacial tension, the capillary pressure, the saturation history of reservoir, among other properties have an impact on the reservoir’s wettability.

Downloads

Download data is not yet available.

References

ABDALLAH, W. et al. Fundamentals of Wettability, November 2011, Oilfield Review, volume 19, p. 51-56.

Asociación Colombiana del Petróleo. Informe Estadístico Petrolero 2015. Recuperado de
https://acp.com.co/web2017/.../Informe%20Estadistico%20Petrolero%202014.pdf

ASTM D4007–08. “Standard Test Method for Water and Sediment in Crude Oil by the Centrifuge Method (Laboratory Procedure)”. 2008.
ASTM D 4448. “Standard Guide for Sampling Ground-Water Monitoring Wells”. 2001.

ASTM D70, “Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method)”. 2009.

BOURREL M., SALAGER J., SCHECHTER R. S., WADE W. H.A correlation for phase behavior of nonionic surfactants, J. Colloid Interf. Sci., 1980, 75, p. 451-461.

BRANCO V., MANSOORI G., DE ALMEIDA L. Asphaltene flocculation and collapse from petroleum fluids. Journal Petroleum Science and Engineering, 2001, p. 217.

Camacho, R. P., & Grosso, J. L. (2003). Criterios para la selección del sistema de levantamiento artificial para crudos pesados y extrapesados. Fuentes: El reventón energético, 3(1), 2.

Díaz, R. J., Navarro, S. F. M., & Tavera, C. P. S. (2007). Modelo estadístico para la realización de analogías orientadas a procesos de recobro mejorado. Revista Fuentes, 5(1).

Figueira, J. N., Simão, R. A., Soares, B. G., & Lucas, E. F. (2017). The influence of chemicals on asphaltenes precipitation: a comparison between atomic force microscopy and near infrared techniques. Revista Fuentes, 15(1), 7-17.

García, C. A., Rodríguez, O. C., Casallas, P. A., Cruz, G., Hernández, F. E., Afanador, L. E., & Rodríguez, L. (2010). Optimización del transporte por oleoducto de crudo pesado Castilla. Fuentes: El reventón energético, 8(1), 2.

Guerrero-Martin, C. A., Montes-Páez, E., de Oliveira, K., Cristina, M., Campos, J., & Lucas, E. F. (2018, June). Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production. In SPE Trinidad and Tobago Section Energy Resources Conference. Society of Petroleum Engineers.

JAIMES M., PACHÓN Z., VILLAR A., DORADO, R. Technical/ Economic Selection and Evaluation of Chemical Treatments to Enhance the Efficiency of Artificial Lifting Systems in the Production of Heavy Crude: A Colombian Field Application. Heavy Oil Latin America Congress, 2011, p. 1-3.

KWOK D. Y., NEUMANN, A. W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Science, volume 81, 1999, p. 167–249.

Martin, C. A. G., & Páez, E. M. (2017). Efeito da salinidade na tensão interfacial do sistema óleo/agua em condições isobáricas e incremento gradual da temperatura. Revista Fuentes, 15(2), 117-124.

Martínez-Palou, R., de Lourdes Mosqueira, M., Zapata-Rendón, B., Mar-Juárez, E., Bernal-Huicochea, C., de la Cruz Clavel-López, J., & Aburto, J. (2011). Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 75(3-4), 274-282.

Meneses, A. F. O., Moreno, L. F. C., & Plata, J. A. R. (2017). Metodología experimental para la estimación de permeabilidades relativas en dos y tres fases por medio de ajuste histórico. Revista Fuentes, 15(1), 75-85.

Molano, A. M. J., Navarro, S. F. M., & Díaz, R. J. (2014). Metodología para el diseño de baches en un proceso de inyección de polímeros para recobro mejorado, considerando fenómenos de interacción roca/fluidos. Fuentes: El reventón energético, 12(2), 6.

Mousavi-Dehghani, S. A., Riazi, M. R., Vafaie-Sefti, M., & Mansoori, G. A. (2004). An analysis of methods for determination of onsets of asphaltene phase separations. Journal of Petroleum Science and Engineering, 42(2-4), 145-156.

Norma API RP 40 “Recommended practices for core analysis”. American Petroleum Institute, Washington D.C. Second Edition, 1998.

Norma API RP 42: “Laboratory Testing of Surface Active Agents for Well Stimulation, Section 3: Interfacial Tension and Wettability”, American Petroleum Institute, Washington D.C. Second Edition, 1977.

RONDÓN, Miguel, et al. Breaking of water-in-crude oil emulsions. 1. Physicochemical phenomenology of demulsifier action. Energy and Fuels. 20, p. 1600-1604, 2006.

SALAGER, J.L., ANTÓN R., AUBRY, J.M. Formulación de Micoremulsiones por el Método del HLD. Techniques de I’Inegénieur, Vol. Génie des Procédés, 2001, artículo J2 157, 1-20.

Sanchez, A. F. P., Sanchez, J. D. B., Gonzalez, J. F. R., & Ramirez, L. E. M. (2017). Transporte de crudo pesado por oleoducto usando el método de dilución: Un enfoque práctico para modelar la caída de presión y la precipitación de asfaltenos. Revista Fuentes, 15(2), 7-17.

Sierra, D. M., Navarro, S. F. M., & Tavera, C. P. S. (2006). Simulación de un piloto de inyección continua de vapor usando pozos horizontales. Fuentes: El reventón energético, 4(2), 2.

SPEIGHT, J., “Characterization of Heavy Crude Oils and Petroleum Residues,” Symposium International, Editions Technip, Paris, 1984, pp. 32 – 41.

Trujillo, M., Delgadillo, C., Claro, Y., Rojas, R., & Sandoval, J. (2018). Reduciendo la incertidumbre en la ejecución de un piloto de combustión in situ en un campo de crudo extra pesado colombiano mediante la realización de una prueba de conectividad con nitrógeno. Revista Fuentes, 16(2).