New chemical recovery technologies and their applicability in Colombian fields
Published 2020-12-09
Keywords
- enchanced oil recovery,
- processes,
- emerging technologies,
- screening parameters,
- operation windows
How to Cite
Copyright (c) 2020 Revista Fuentes, el reventón energético, Universidad Industrial de Santander
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In the last decade, progress has been made in the implementation of chemical recovery processes in Colombia, including sealing gels injection pilots for chemical conformance, colloidal dispersion gels, polymers, alkali and surfactants. These processes have been of marked relevance both for the promise of increasing the Colombian fields recovery factor and for reviewing fields in their abandonment plans through the application of new technologies. However, experimental studies at reservoir conditions have shown that there are limitations for the application of these technologies, mainly in relation to: injection water quality, formation water salinity, temperature, among others; This makes it difficult to establish the technical and / or economic viability of its implementation in assets with high reserve potential and possible expansion scenarios.
For to the above, and due the need to increase crude oil reserves, contributing to the understanding and development of enhanced oil recovery in the country; this paper presents a review of the limitations of conventional chemical recovery technologies, the opportunities of emerging technologies that allow overcoming technical and operational limitations and an estimate of the emerging technologies potential evaluated in the national context. For this, by comparing the operational windows of the technologies with the petrophysical properties of the Colombian fields, it was possible to establish the potential for increased reserves due to the application of new technologies. In addition, the needs in the design and installation of new equipment for the storage, chemicals injection and their associated costs were identified, taking as a premise that the application of a new recovery technology, in this case, is conditional on technical - economic feasibility, that allow to take advantage of the existing facilities in the field optimizing the possible CAPEX (Capital Expenditures) associated with the projects.
Downloads
References
Albonico, P., & Lockhart, T. P. (1993, January). Divalent ion-resistant polymer gels for high-temperature applications: syneresis inhibiting additives. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers.
Alvarado, V., Manrique, E. (2010). Enhanced Oil Recovery: Field Planning and Development Strategies. ISBN 978-1-85617-855-6, Elsevier, U.S.A
Amaya, M., Amaya, R., Castaño, H., Lozano, E., Rueda, C. F., Elphick, J., ... & Marín, A. J. V. (2010). Casabe: Revitalización de un campo maduro. Oilfield review, 22(1).
ANH (2010). Información General de Cuencas Sedimentarias de Colombia
ANH (2018). Estadísticas de Producción Mensual de Petróleo. Colombia: Agencia Nacional de Hidrocarburos. Recuperado de http://www.anh.gov.co/Operaciones-Regalias-y-Participaciones/Sistema-Integrado-de-Operaciones/Paginas/Estadisticas-de-Produccion.aspx
Araujo, Y. C. & Araujo, M. (2018). Polymers for application in high temperature and high salinity reservoirs - critical review of properties and aspects to consider for laboratory screening. Revista Fuentes: El reventón energético, 16(2), 55-71. DOI: http://dx.doi.org/10.18273/revfue.v16n2-2018004.
Barrero, D., Pardo, A., Vargas, C. A., & Martínez, J. F. (2007). Colombian sedimentary basins: Nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos, 1, 92.
Bennetzen, M. V., & Mogensen, K. (2014, December). Novel applications of nanoparticles for future enhanced oil recovery. In International petroleum technology conference. International Petroleum Technology Conference.
British Petroleum, B. P. (2017). Statistical Review of World Energy, 2010.
Castro, R., Maya, G., Mantilla, J., Diaz, V., Amaya, R., Lobo, A., ... & Villar, A. (2014, May). Waterflooding in Colombia: Past, present, and future. In SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers.
Castro-Garcia, R. H., Maya-Toro, G. A., Jimenez-Diaz, R., Quintero-Perez, H. I., Díaz-Guardia, V. M., Colmenares-Vargas, K. M., ... & Pérez-Romero, R. A. (2016). Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CT&F-Ciencia, Tecnología y Futuro, 6(3), 71-90.
Castro, R. H., Maya, G. A., Sandoval, J., Leon, J. M., Zapata, J. F., Lobo, A., ... & Romero, J. L. (2013, July). Colloidal Dispersion Gels (CDG) in Dina Cretáceos Field: From Pilot Design to Field Implementation and Performance. In SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers.
Castro, R., Pérez, R., Maya, G., Quintero, H., Jimenez, R., García, H., & Quintero, L. (2016). Polymer Flooding Process to Increase Recovery Factor. GEORESURSY, 18(4), 271-280.
Chauhan, P. D. (2014). Data analysis and summary for surfactant-polymer flooding based on oil field projects and laboratory data. Masters Theses. Missouri University of Science and Technology
Delgadillo Aya, C. L., Díaz Guardia, V. M., Maya Toro, G. A., Castro García R. H. y Quintero Pérez, H. I. (2018). Metodología para la priorización de tecnologías emergentes de recobro mejorado químico. Revista Fuentes: El reventón energético, 16(2), 41-53.
Donaldson, E. C., Chilingarian, G. V., & Yen, T. F. (Eds.). (1989). Enhanced oil recovery, II: Processes and operations. Elsevier.
Dupuis, G., Rousseau, D., Tabary, R., & Grassl, B. (2011). Flow of hydrophobically modified water-soluble-polymer solutions in porous media: New experimental insights in the diluted regime. SPE Journal, 16(01), 43-54.
Ecopetrol S.A. (2010). EcoEOR. Software para la Selección de Procesos EOR
El-Hoshoudy, A. N., Desouky, S. E. M., Elkady, M. Y., Al-Sabagh, A. M., Betiha, M. A., & Mahmoud, S. (2017). Hydrophobically associated polymers for wettability alteration and enhanced oil recovery–Article review. Egyptian Journal of Petroleum, 26(3), 757-762.
Hernandez, F. A. T., Niño, J. C. L., & Moreno, R. L. (2018). Effects of salts and temperature on rheological and viscoelastic behavior of low molecular weight HPAM solutions. Fuentes, el reventón energético, 16(1), 19-35.
Jensen, T., Kadhum, M., Kozlowicz, B., Sumner, E. S., Malsam, J., Muhammed, F., & Ravikiran, R. (2018, April). Chemical EOR Under Harsh Conditions: Scleroglucan As A Viable Commercial Solution. In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers.
Kamal, M. S., Sultan, A. S., Al-Mubaiyedh, U. A., & Hussein, I. A. (2015). Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems. Polymer Reviews, 55(3), 491-530.
Kamal, M. S., Hussein, I. A., & Sultan, A. S. (2017). Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy & Fuels, 31(8), 7701-7720.
Lake, L. W. (1996). Enhanced Oil Recovery. Prentice Hall
Leonhardt, B., Ernst, B., Reimann, S., Steigerwald, A., & Lehr, F. (2014, April). Field testing the polysaccharide schizophyllan: results of the first year. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers.
Lizcano-Nino, J. C., de Sousa Ferreira, V. H., & Moreno, R. B. L. (2020). Less-concentrated HPAM solutions as a polymer retention reduction method in CEOR. Fuentes, el reventón energético, 18(1), 75-92.
Maya-Toro, G. A., Castro-García, R. H., Pachón-Contreras, Z. D. P., & Zapata-Arango, J. F. (2012). Polymer gels for controlling water thief zones in injection wells. CT&F-Ciencia, Tecnología y Futuro, 5(1), 37-44.
Maya, G., Jimenez, R., Castro, R., Mantilla, J., Vargas, J., Cardenas, F., ... & Romero, J. (2015, November). Design and implementation of the first polymer flooding project in Colombia: Yariguí-Cantagallo Field. In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers.
Maya, G., Castro, R., Sandoval, J., Pachon, Z., Jimenez, R., Pinto, K., ... & Muñoz, S. (2014, May). Successful polymer gels application in a highly channeled peripheral injection well: Tello Field pilot. In SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers.
Maya, G. A., Mercado Sierra, D. P., Castro, R., Trujillo Portillo, M. L., Soto, C. P., & Pérez, H. (2010, January). Enhanced Oil Recovery (EOR) Status-Colombia. In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers.
Molano, A. M. J., Navarro, S. F. M., & Díaz, R. J. (2014). Metodología para el diseño de baches en un proceso de inyección de polímeros para recobro mejorado, considerando fenómenos de interacción roca/fluidos. Fuentes: El reventón energético, 12(2), 6.
Manrique, E., Ahmadi, M. & Samani, S. (2017). Historical and Recent Observations in Polymer Floods: An Update Review. CT&F - Ciencia Tecnología y Futuro 6(5), 17-48. https://doi.org/10.29047/issn.0122-5383.
Olajire, A. A. (2014). Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy, 77, 963-982.
Perez, R., Castro Garcia, R. H., Jimenez, R., Maya, G. A., Leon Hinestrosa, J. M., Reyes, J. D., ... & Quintero Roa, L. M. (2017, May). Mature Field Revitalization Using Polymer Flooding: Palogrande-Cebú Field Case. In SPE Latin America and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers.
Pye, D. J. (1964). Improved secondary recovery by control of water mobility. Journal of Petroleum technology, 16(08), 911-916.
Pinto, M. S., Herrera, D. M., & Angarita, J. C. G. (2018). Production optimization for a conceptual model through combined use of polymer flooding and intelligent well technology under uncertainties. Fuentes, el reventón energético, 16(1), 37-45.
Quadri, S. M. R., Jiran, L., Shoaib, M., Hashmet, M. R., AlSumaiti, A. M., & Alhassan, S. M. (2015, November). Application of biopolymer to improve oil recovery in high temperature high salinity carbonate reservoirs. In Abu Dhabi international petroleum exhibition and conference. Society of Petroleum Engineers.
Raffa, P., Broekhuis, A. A., & Picchioni, F. (2016). Polymeric surfactants for enhanced oil recovery: A review. Journal of Petroleum Science and Engineering, 145, 723-733.
Raffa, P., Wever, D. A. Z., Picchioni, F., & Broekhuis, A. A. (2015). Polymeric surfactants: synthesis, properties, and links to applications. Chemical reviews, 115(16), 8504-8563.
Reichenbach-Klinke, R., Stavland, A., Strand, D., Langlotz, B., & Brodt, G. (2016, March). Can associative polymers reduce the residual oil saturation?. In SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers.
Rosenkilde, C., Brakstad, K., & Smith, J. B. (2016, May). Degradation of Synthetic Polymers during Radial Injection in a Sandstone. In 78th EAGE Conference and Exhibition 2016.
Sandiford, B. B. (1964). Laboratory and field studies of water floods using polymer solutions to increase oil recoveries. Journal of Petroleum Technology, 16(08), 917-922.
Seright, R. S. (2016, April). How much polymer should be injected during a polymer flood?. In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers.
Shaefer, M. T., Carman, P. S., & Ngoma, V. (2011, January). New thermo thickening associative polymer system pushes limits of surfactant gels. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers
ShamsiJazeyi, H., Miller, C. A., Wong, M. S., Tour, J. M., & Verduzco, R. (2014). Polymer‐coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, 131(15).
ShamsiJazeyi, H., Verduzco, R., & Hirasaki, G. J. (2014). Reducing adsorption of anionic surfactant for enhanced oil recovery: Part I. Competitive adsorption mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 453, 162-167.
Sheng, J. (2010). Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing.
Sheng, J. J., Leonhardt, B., & Azri, N. (2015). Status of polymer-flooding technology. Journal of Canadian Petroleum Technology, 54(02), 116-126.
Song, B., Hu, X., Shui, X., Cui, Z., & Wang, Z. (2016). A new type of renewable surfactants for enhanced oil recovery: dialkylpolyoxyethylene ether methyl carboxyl betaines. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 433-440.
Sorbie, K. S. (1991). Polymer-Improved Oil Recovery, 115 Glasgow. Scotland: Blackie & Son, 126-163.
Spildo, K., Johannessen, A. M., & Skauge, A. (2012, January). Low salinity waterflood at reduced capillarity. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers.
Standnes, D. C., & Skjevrak, I. (2014). Literature review of implemented polymer field projects. Journal of Petroleum Science and Engineering, 122, 761-775.
Sveistrup, M., van Mastrigt, F., Norrman, J., Picchioni, F., & Paso, K. (2016). Viability of biopolymers for enhanced oil recovery. Journal of Dispersion Science and Technology, 37(8), 1160-1169.
Sun, G., Crouse, B., Freed, D. M., Xu, R., Bautista, J., Zhang, R., & Dressler, M. (2018). Polymer flooding–Does Microscopic Displacement Efficiency Matter. Fuentes, el reventón energético, 16(2).
Taylor, K. C., & Nasr-El-Din, H. A. (1998). Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review. Journal of Petroleum Science and Engineering, 19(3-4), 265-280.
Thomas, S. (2008). Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l'IFP, 63(1), 9-19.
Tadros, T. (2007). Colloid stability using polymeric surfactants. Colloid Stability, 235-262.
Vanegas, P. A. V., Ruiz, T. Y. Z., Macualo, F. H. E., & Martin, C. A. G. (2019). Metodología para la formulación de proyectos de recuperación química mediante analogías. Revista Fuentes, 17(1), 29-35.
Viñarta, S. C., Delgado, O. D., Figueroa, L. I., & Fariña, J. I. (2013). Effects of thermal, alkaline and ultrasonic treatments on scleroglucan stability and flow behavior. Carbohydrate polymers, 94(1), 496-504.
Wu, Y., Mahmoudkhani, A., Watson, P., Fenderson, T. R., & Nair, M. (2012, January). Development of new polymers with better performance under conditions of high temperature and high salinity. In SPE EOR conference at oil and gas West Asia. Society of Petroleum Engineers.
Wu, X. C., Xiong, C., Han, D., Liu, H., Gao, S., Xu, H., ... & Ren, F. (2014, October). A New IOR Method for Mature Waterflooding Reservoirs:" Sweep Control Technology". In SPE Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers.
Wu, X., Xiong, C., Xu, H., Zhang, J., Lu, C., Lu, X., ... & Chen, J. (2015, November). A novel particle-type polymer and IOR/EOR property evaluation. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.
Wu, X., Yang, Z., Xu, H., Zhang, L., Xiong, C., Yang, H., ... & Cao, H. (2016, April). Success and Lessons Learned from Polymerflooding a Ultra High Temperature and Ultra High Salinity Oil Reservoir-A Case Study from West China. In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers.
Yang, F., Wang, D., Yang, X., Sui, X., Chen, Q., & Zhang, L. (2004, January). High concentration polymer flooding is successful. In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers.
Zaitoun, A., & Potie, B. (1983, January). Limiting conditions for the use of hydrolyzed polyacrylamides in brines containing divalent ions. In SPE Oilfield and Geothermal Chemistry Symposium. Society of Petroleum Engineers.
Zhu, Y., Hou, Q., Liu, W., Ma, D., & Liao, G. Z. (2012, January). Recent progress and effects analysis of ASP flooding field tests. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers.