Prediction of asphaltene stability in crude oil based on SARA analysis using artificial neural networks
Published 2021-12-10
Keywords
- Asphaltenes,
- stability,
- multivariate statistics,
- crude oil,
- SARA
How to Cite
Copyright (c) 2021 Universidad Industrial de Santander
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The stability of the oil or its tendency to produce asphaltene precipitation must be estimated, due to its importance in predicting problems of obstructions in pipelines and process equipment. From the fractions of hydrocarbon components of oil, called SARA fractions (Saturates, Aromatics, Resins, and Asphaltenes), indexes have been generated to estimate the stability condition based on the solubility and insolubility ratios of the asphaltenes concerning the other fractions from laboratory studies and mathematical analysis. The present research analyzes the applicability of multivariate statistical tests by Artificial Neural Networks (ANN) to predict the stability condition determined from two indexes, the Colloidal Instability (CII) and the Stability Index (SI), also, range modifications are proposed based on the results and an index based on the solubility/insolubility (SII). 193 SARA analyses of oils from different countries obtained from articles published in scientific journals were used as a study sample for the creation of the ANN, with which the percentage of correct classification was predicted based on the interaction and tendency of relationships between the four fractions as a whole. Additionally, 11 samples external to those used in the ANN model were used to validate the model. It was obtained that the ANN correctly classified 92.75% of the stability condition determined with the CII and 88.60% concerning the IE. Adjustment of the stability ranges improved the prognosis to 97.41% concerning the CII and 96.89% for the IE. The use of the IIS showed a lower adjustment according to the ANN with 98.45% of cases correctly classified. The applicability of ANN methodology to classify the stability condition of oil samples based on their SARA fractions was demonstrated.
Downloads
References
- Akbarzadeh, K., Allenson, S., Creek, J., & Jamaluddin, A. (2007). Asphaltenes-Problematic but Rich in Potential. Oilfield Review, 9(2), 22-48
- Akmaz, S., Iscan, O., Gurkaynak, M.A., & Yasar, M. (2011). The Structural Characterization of Saturate, Aromatic, Resin, and Asphaltene Fractions of Batiraman Crude Oil. Petroleum Science and Technology, 29,160–17. doi: 10.1080/10916460903330361
- Alonso-Ramírez, G., Cuevas-García, R., Sánchez-Minero, F., Ramírez, J., Moreno-Montiel, M., Ancheyta, J., & Carbajal-Vielman, R. (2020). Catalytic hydrocracking of a Mexican heavy oil on a MoS2/Al2O3 catalyst: I. Study of the transformation of isolated saturates fraction obtained from SARA analysis. Catalysis Today, 353, 153-162. doi: 10.1016/j.cattod.2019.07.031
- Arya, A., von Solms, N., & Kontogeorgis, G. M. (2015). Determination of Asphaltene Onset Conditions using the Cubic Plus Association Equation of State. Fluid Phase Equilibria, 400, 8-19. doi: 10.1016/j.fluid.2015.04.032
- Ashoori, S., Sharifi, M., Masoumi, M., & Salehi, M.M. (2017). The relationship between SARA fractions and crude oil stability. Egyptian Journal of Petroleum, 26, 209-213. doi: 10.1016/j.ejpe.2016.04.002
- Aske, N., Kallevik, H., & Sjöblom, J. (2001). Determination of Saturate, Aromatic, Resin, and Asphaltenic (SARA) Components in Crude Oils by Means of Infrared and Near-Infrared Spectroscopy. Energy & Fuels, 15, 1304-1312. doi: 10.1021/ef010088h
- Asomaning, S. (2003). Test Methods for Determining Asphaltene Stability in Crude Oils. Petroleum Science and Technology, 21(3-4), 581-590. doi: 10.1081/LFT-120018540
- Asomaning, S., & Watkinson, A.P. (2000). Petroleum Stability and Heteroatom Species Effects in Fouling of Heat Exchangers by Asphaltenes. Heat Transfer Engineering, 21(3), 10-16. doi: 10.1080/014576300270852
- ASTM D2007. (2011). Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. West Conshohocken, PA: American Society for Testing and Materials
- Basheer, I.A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. doi: 10.1016/s0167-7012(00)00201-3
- Bisht, H., Reddy, M., Malvanker, M., Patil, R.C., Gupta, A., Hazarika, B., & Das, A.K. (2013). Efficient and Quick Method for Saturates, Aromatics, Resins, and Asphaltenes Analysis of Whole Crude Oil by Thin-Layer Chromatography−Flame Ionization Detector. Energy & Fuels, 27, 3006-3013. doi: 10.1021/ef4002204
- Brahma, K.K., Bendedouch, D., Bouhadda, Y., Bouanani, F., Bounaceur, B., & Sardi, A. (2019). Stability of Hassi-messaoud Asphaltenes in Media of Different Polarities. Petroleum Chemistry, 59(11), 1190–1194. doi: 10.1134/s0965544119110094
- Campen, S., Moorhouse, S.J., & Wong, J.S.S. (2019). Mechanism of an asphaltene inhibitor in different depositing environments: Influence of colloid stability. Journal of Petroleum Science and Engineering, 106502. doi: 10.1016/j.petrol.2019.106502.
- Carnahan, N., Salager, J-L., & Antón, R. (2007, April 30-May 3). Effect of Resins on Stability of Asphaltenes [Conference presentation]. Offshore Technology Conference, Houston, Texas, United States. doi: 10.4043/19002-ms
- Chamkalani, A., Mohammadi, A.H., Eslamimanesh, A., Gharagheizi, F., & Richon, D. (2012). Diagnosis of asphaltene stability in crude oil through ‘‘two parameters’’ SVM model. Chemical Engineering Science, 81, 202–208. doi: 10.1016/j.ces.2012.06.060
- Cheshkova, T.V., Kovalenko, E.Y., Sergun, V.P., Gerasimova, N.N., Sagachenko, T.A., & Min, R.S. (2019). Oil Resins and Asphaltenes of Different Chemical Nature. Chemistry for Sustainable Development, 1, 78-85. doi: 10.15372/CSD20190113
- Codină, G.G., Dabija, A., & Oroian, M. (2019). Prediction of Pasting Properties of Dough from Mixolab Measurements Using Artificial Neuronal Networks. Foods, 8(10), 447-459. doi: 10.3390/foods8100447
- Fan, T., & Buckley, J. S. (2002). Rapid and Accurate SARA Analysis of Medium Gravity Crude Oils. Energy & Fuels, 16, 1571-1575. doi: 10.1021/ef0201228
- Fan, T., Wang, J., & Buckley, J. S. (2002). Evaluating Crude Oils by SARA Analysis. [Conference presentation]. SPE Annual Technical Conference and Exhibition, Tulsa, Oklahoma, USA. doi: 10.2118/75228-MS
- Galvis, L.V., Ochoa, C.A., Arguello, H., Carvajal, J.M., & Calderón, Z.H. (2011). Estimación de propiedades mecánicas de roca utilizando inteligencia artificial. Ingeniería y Ciencia, 7(14), 83-103
- García, P., y Sancho, J. (2010). Estimación de densidad de probabilidad mediante ventanas de Parzen. Jornadas de introducción a la investigación de la UPCT, 3, 68-70. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=3709476
- Gaspar, A., Zellermann, E., Lababidi, S., Reece, J., & Schrader, W. (2012). Characterization of Saturates, Aromatics, Resins, and Asphaltenes Heavy Crude Oil Fractions by Atmospheric Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 26, 3481-3487. doi: 10.1021/ef3001407
- Gestal, M. (2013). Introducción a las redes neuronales Recuperado de: https://tinyurl.com/yywe7338
- Guzmán, R., Ancheyta, J., Trejo, F., & Rodríguez, S. (2017). Methods for determining asphaltene stability in crude oils. Fuel, 188, 530–543. doi: 10.1016/j.fuel.2016.10.012
- Hannisdal, A., Hemmingsen, P.V., & Sjöblom, J. (2005). Group-Type Analysis of Heavy Crude Oils Using Vibrational Spectroscopy in Combination with Multivariate Analysis. Industrial & Engineering Chemistry Research, 44, 1349-1357. doi: 10.1021/ie0401354
- Hascakir, B. (2017, October 9-11). A New Approach to Determine Asphaltenes Stability [Conference presentation]. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA. doi: 10.2118/187278-ms
- Kök, M. V., Karacan, Ö., & Pamir, R. (1998). Kinetic Analysis of Oxidation Behavior of Crude Oil SARA Constituents. Energy & Fuels, 12, 580-588. doi: 10.1021/ef970173i
- Kok, M.V., & Gul, K.G. (2013). Thermal characteristics and kinetics of crude oils and SARA fractions. Thermochimica Acta, 569, 66-70. doi: 10.1016/j.tca.2013.07.014
- Kök, M.V., Varfolomeev, M.A., & Nurgaliev, D.K. (2019). Determination of SARA fractions of crude oils by NMR technique. Journal of Petroleum Science and Engineering, 179, 1-6. doi: 10.1016/j.petrol.2019.04.026
- Lamus, C., Guzmán, A., Murcia, B., Cabanzo, R., & Mejía-Ospino, E. (2011). Uso de Análisis Multivariado En La Determinación SARA De Crudos Por Espectroscopia NIR. Revista Colombiana de Física, 43(3), 635-642.
- Likhatsky, V.V., & Syunyaev, R.Z. (2010). New Colloidal Stability Index for Crude Oils Based on Polarity of Crude Oil Components. Energy & Fuels, 24(12), 6483–6488. doi: 10.1021/ef101033p
- Liu, P., Shi, Q., Chung, K.H., Zhang, Y., Pan, N., Zhao, S., & Xu, C. (2010). Molecular Characterization of Sulfur Compounds in Venezuela Crude Oil and Its SARA Fractions by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 24, 5089–5096. doi: 10.1021/ef100904k
- Madh, M., Kharrat, R., & Hamoule, T. (2017). Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study. Petroleum. doi: 10.1016/j.petlm.2017.08.001.
- Mahmoud, M.B., & Aboujadeed, A.A. (2017). Compatibility Assessment of Crude Oil Blends Using Different Methods. Chemical Engineering Transactions, 57, 1705-1710. doi: 10.3303/CET1757285
- Mansoori, G. (2009). A unified perspective on the phase behaviour of petroleum fluids. International Journal Oil, Gas and Coal Technology, 2(2), 141-167
- Mateus, S.P., González, N., y Branch, J.W. (2014). Aplicación de Redes Neuronales Artificiales en Entornos Virtuales Inteligentes. Información Tecnológica, 25(5), 103-112. doi: 10.4067/S0718-07642014000500015
- Meléndez, L.V., Lache, A., Orrego-Ruiz, J.A., Pachón, Z., & Mejía-Ospino, E. (2012). Prediction of the SARA analysis of Colombian crude oils using ATR–FTIR spectroscopy and chemometric methods. Journal of Petroleum Science and Engineering, 91, 56-60. doi: 10.1016/j.petrol.2012.04.016
- Mohammadi, M., Khorrami, M.K., Vatani, A., Ghasemzadeh, H., Vatanparast, H., Bahramian, A., & Fallah, A. (2021). Genetic algorithm based support vector machine regression for prediction of SARA analysis in crude oil samples using ATR-FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245, 118945. doi: 10.1016/j.saa.2020.118945
- Morantes, L.R., Percebom, A.M., & Mejía-Ospino, E. (2019). On the molecular basis of aggregation and stability of Colombian asphaltenes and their subfractions. Fuel, 241, 542-549. doi: 10.1016/j.fuel.2018.12.028
- Pérez, M.F., Rozo, M.A., Ulloa, R., Enrique, F., & Calderón, Z. (2002). Aplicación de las redes neuronales al estudio de yacimientos de petróleo. Fuentes, el reventón energético, 2(2), 76-90
- Prakoso, A., Punase, A., & Klock, K. (2016). Determination of the Stability of Asphaltenes Through Physicochemical Characterization of Asphaltenes. [Conference presentation]. SPE Annual Technical Conference and Exhibition, Anchorage, Alaska, USA. doi: 10.2118/180422-MS
- Punase, A., & Hascakir, B. (2017). Stability Determination of Asphaltenes through Dielectric Constant Measurements of Polar Oil Fractions. Energy & Fuels, 31(1), 65-72. doi: 10.1021/acs.energyfuels.6b01045
- Recknagel, F., & Wilson, H. (2000). Elucidation and Prediction of Aquatic Ecosystems by Artificial Neuronal Networks. In Lek, S., & Guégan, J.F. (Eds.), Artificial Neuronal Networks. Environmental Science. Berlin: Springer. doi: 10.1007/978-3-642-57030-8_10
- Rezaee, S., Tavakkoli, M., Doherty, R., & Vargas, F.M. (2020). A new experimental method for a fast and reliable quantification of saturates, aromatics, resins, and asphaltenes in crude oils. Petroleum Science and Technology, 38(21), 955-961. doi: 10.1080/10916466.2020.1790598
- Riveros, L., Jaimes, B., Ranaudo, M.A., Castillo, J., & Chirinos, J. (2006). Determination of Asphaltene and Resin Content in Venezuelan Crude Oils by Using Fluorescence Spectroscopy and Partial Least Squares Regression. Energy & Fuels, 20, 227-230. doi: 10.1021/ef0501243
- Romero, J.F., Feitosa, F.X., Do Carmo, F.R., & De Sant’Ana, H.B. (2018). Paraffin effects on the stability and precipitation of crude oil asphaltenes: Experimental onset determination and phase behavior approach. Fluid Phase Equilibria, 474, 116-125. doi: 10.1016/j.fluid.2018.07.017
- Safaie, K., & Naza, A. (2014). Evaluation of Asphaltene Inhibitors Effect on Aggregation Coupled Sedimentation Process. Journal of Dispersion Science and Technology, 35(3), 329-337
- Sánchez-Minero, F., Ancheyta, J., Silva-Oliver, G., & Flores-Valle, S. (2013). Predicting SARA composition of crude oil by means of NMR. Fuel, 110, 318-321.doi: 10.1016/j.fuel.2012.10.027
- Santos, D.C., Filipakis, S.D., Rolemberg, M.P., Lima, E.R.A., Paredes, M.L.L. (2017). Asphaltene flocculation parameter in Brazilian crude oils and synthetic polar and nonpolar mixtures: Experimental and modeling. Fuel, 199, 606–615.doi: 10.1016/j.fuel.2017.03.024
- Santos, J.M., Vetere, A., Wisniewski, A., Eberlin, M.N., & Schrader, W. (2020). Modified SARA Method to Unravel the Complexity of Resin Fraction(s) in Crude Oil. Energy & Fuels, 34(12), 16006–16013. doi: 10.1021/acs.energyfuels.0c02833
- Sepúlveda, J., Bonilla, J., y Medina, Y. (2010). Predicción de la Estabilidad de los Asfaltenos Mediante la Utilización del Análisis SARA para Petróleos Puros. Revista Ingeniería y Región, 7(1), 103-110.
- Solaimany, A.R., & Bayandory, L. (2008). Investigation of Asphaltene Stability in the Iranian Crude Oils. Iranian Journal of Chemical Engineering, 5(1), 3-12.
- Speight, J.G. (2004). Petroleum Asphaltenes Part 1. Asphaltenes, Resins and the Structure of Petroleum. Oil & Gas Science and Technology – Rev. IFP, 59(5), 467-477.
- Sulaimon, A.A., & Govindasamy, K. (2015, October 20-22). New Correlation for Predicting Asphaltene Deposition [Conference presentation]. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia. doi: 10.2118/176436-ms
- Sulaimon, A.A., De Castro, J.K.M., & Vatsa, S. (2019). New correlations and deposition envelopes for predicting asphaltene stability in crude oils. Journal of Petroleum Science and Engineering, 106782. doi: 10.1016/j.petrol.2019.106782.
- Syunyaev, R.Z., & Likhatsky, V.V. (2010). Effects of Temperature and Pressure on the Phase State of Oils and Asphaltene Solutions Observed Using Dielectric Spectroscopy. Energy & Fuels, 24, 2233–2239. doi: 10.1021/ef900819p
- Tatar, A., Shokrollahi, A., Halali, M.A., Azari, V., & Safari, H. (2015). A Hybrid Intelligent Computational Scheme for Determination of Refractive Index of Crude Oil Using SARA Fraction Analysis. The Canadian Journal of Chemical Engineering, 93, 1547–1555. doi: 10.1002/cjce.22257
- Torkaman, M., Bahrami, M., & Dehghani, M. (2017). Influence of Temperature on Aggregation and Stability of Asphaltenes. I. Perikinetic Aggregation. Energy & Fuels, 31(10), 11169-11180. doi: 10.1021/acs.energyfuels.7b00417
- Torkaman, M., Bahrami, M., & Dehghani, M.R. (2018). Influence of Temperature on Aggregation and Stability of Asphaltenes: II. Orthokinetic Aggregation. Energy & Fuels, 32(5), 6144-6154. doi: 10.1021/acs.energyfuels.7b03601
- Torres-Faurrieta, L.K., Dreyfus-León, M.J., & Rivas, D. (2016). Recruitment forecasting of yellowfin tuna in the eastern Pacific Ocean with artificial neuronal networks. Ecological Informatics, 36, 106–113. doi: 10.1016/j.ecoinf.2016.10.005
- Villada, F., Arroyave, D., & Villada, M. (2014). Pronóstico del Precio del Petróleo mediante Redes Neuronales Artificiales. Información tecnológica, 25(3), 145-154. doi: 10.4067/S0718-07642014000300017
- Wei, B., Zou, P., Shang, J., Gao, K., Li, Y., Sun, L., & Pu, W. (2018). Integrative determination of the interactions between SARA fractions of an extra-heavy crude oil during combustion. Fuel, 234, 850-857. doi: 10.1016/j.fuel.2018.07.127
- Xiong, R., Guo, J., Kiyingi, W., Feng, H., Sun, T., Yang, X., & Li, Q. (2020). Method for Judging the Stability of Asphaltenes in Crude Oil. ACS Omega, 5, 21420−2142. doi: 10.1021/acsomega.0c01779
- Yuan, C-D., Varfolomeev, M.A., Emelianov, D.A., Eskin, A.A., Nagrimanov, R.N., Kok, M.V., Afanasiev, I.S., Fedorchenko, G.D., & Kopylova, E.V. (2017). Oxidation Behavior of Light Crude Oil and Its SARA Fractions Characterized by TG and DSC Techniques: Differences and Connections. Energy & Fuels, 32(1), 801–808. doi: 10.1021/acs.energyfuels.7b02377
- Zhao, S., Pu, W., Sun, B., Gu, F., & Wang, L. (2019a). Comparative evaluation on the thermal behaviors and kinetics of combustion of heavy crude oil and its SARA fractions. Fuel, 239, 117-125. doi: 10.1016/j.fuel.2018.11.014
- Zhao, S., Pu, W., Yuan, C., Peng, X., Zhang, J., Wang, L., & Emelianov, D.A. (2019b). Thermal Behavior and Kinetic Triplets of Heavy Crude Oil and Its SARA Fractions during Combustion by High-Pressure Differential Scanning Calorimetry. Energy & Fuels, 33(4), 3176−3186.doi: 10.1021/acs.energyfuels.9b00399
- Zheng, F., Shi, Q., Salvato, G., Giusti, P., & Bouyssiere, B. (2020). Fractionation and Characterization of Petroleum Asphaltene: Focus on Metalopetroleomics. Processes, 8, 1504-1535. doi: 10.3390/pr8111504