Vol. 19 Núm. 2 (2021): Revista Fuentes, el reventón energético Volumen 19 n° 2
Artículos

Diseño conceptual de concentrador solar de disco parabólico para generar energía térmica de alta temperatura

Wuilber Clemente
Centro de Energías Renovables, Universidad Nacional del Centro del Perú
Ciro Espinoza
Centro de Energías Renovables, Universidad Nacional del Centro del Perú
Carlos Martinez
Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú

Publicado 2021-12-10

Palabras clave

  • Energía renovable,
  • energía solar,
  • ingeniería térmica,
  • diseño conceptual

Cómo citar

Clemente, W., Espinoza, C., & Martinez, C. (2021). Diseño conceptual de concentrador solar de disco parabólico para generar energía térmica de alta temperatura. Fuentes, El reventón energético, 19(2), 83–94. https://doi.org/10.18273/revfue.v19n2-2021006

Resumen

La energía solar es la fuente de energía más abundante que debe utilizarse para afrontar la crisis energética mundial y reducir la acumulación de gases de efecto invernadero que influyen en el cambio climático. En esta investigación se diseña, de manera conceptual, un concentrador solar de disco parabólico para generar calor en el punto focal con una temperatura superior a los 400°C para aplicaciones múltiples como, generación de vapor, calentamiento de agua, cocción de alimentos o almacenamiento de calor. La metodología empleada se desarrolla en tres etapas: Definición del problema mediante la identificación de necesidades de los usuarios; determinación del concepto de solución mediante la evaluación de combinación de portadores de función de los componentes; y elección de la configuración, las dimensiones y los materiales, mediante la simulación del elemento esencial que es el disco parabólico con el software SolTrace.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Ahmed, M. H., Giaconia, A., & Amin, A. M. A. (2017). Effect of solar collector type on the absorption system performance. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 304–309. https://doi.org/10.1109/ICRERA.2017.8191284
  2. Ahmed, S. M. M., Al-Amin, M. R., Ahammed, S., Ahmed, F., Saleque, A. M., & Abdur Rahman, M. (2020). Design, construction and testing of parabolic solar cooker for rural households and refugee camp. Solar Energy, 205, 230–240. https://doi.org/10.1016/j.solener.2020.05.007
  3. Asma, M., & Youssef, T. (2018). Modeling of The Parabolic trough Solar Field with Molten Salt for The Region of Tozeur in Tunisia. 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 993–997. https://doi.org/10.1109/ICRERA.2018.8566976
  4. Bellos, E., & Tzivanidis, C. (2019). Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science, 71, 81–117. https://doi.org/10.1016/j.pecs.2018.11.001
  5. Bhave, A. G., & Kale, C. K. (2020). Development of a thermal storage type solar cooker for high temperature cooking using solar salt. Solar Energy Materials and Solar Cells, 208, 110394. https://doi.org/10.1016/j.solmat.2020.110394
  6. Cabeza, L. F., Solé, A., Fontanet, X., Barreneche, C., Jové, A., Gallas, M., Prieto, C., & Fernández, A. I. (2017). Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 185, 836–845. https://doi.org/10.1016/j.apenergy.2016.10.093
  7. Cagnoli, M., Falsig, J. J., Pagola, I., Peña-Lapuente, A., Sanchez, M., Savoldi, L., Villasante, C., & Zanino, R. (2020). Design methodology for a prototype helical receiver adopted in the MOSAIC solar bowl system. Solar Energy, 208, 905–916. https://doi.org/10.1016/j.solener.2020.08.012
  8. Capra, F. (2002). The hideen connections. Integrating the biological, cognitive and social mensions of the life into a science of sustainability (First edit). Doubleday.
  9. Chen, Q., & Wang, Y. (2020). Research Status and Development Trend of Concentrating Solar Power. 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), 390–393. https://doi.org/10.1109/ICRERA49962.2020.9242893
  10. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Agrawala, S., Bashmakov, I. A., Blanco, G., Broome, J., Bruckner, T., Brunner, S., Bustamante, M., Clarke, L., Creutzig, F., Dhakal, S., Dubash, N., Eickemeier, P., Farahani, E., Fischedick, M., Fleurbaey, M., Gerlagh, R., … Zwickel, T. (2014). Resumen para formuladores de políticas. In Instituto Internacional de Análisis de Sistemas Aplicados (IIASA) (Ed.), Cambio climático 2014: Mitigación del cambio climático. Contribución del Grupo de Trabajo III del IPCC al AR5 (p. 32). Prensa de la Universidad de Cambridge. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_summary-for-policymakers.pdf
  11. El Moussaoui, N., Talbi, S., Atmane, I., Kassmi, K., Schwarzer, K., Chayeb, H., & Bachiri, N. (2020). Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC). Solar Energy, 201, 866–871. https://doi.org/10.1016/j.solener.2020.03.079
  12. Espinoza, C. A. (2013). Design methods in mechanical engineering. Atlantic International University.
  13. Espinoza, C. A. (2014). Metodología de investigación tecnológica (C. Espinoza Montes (ed.); Primera Ed). http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/1146/mit1.pdf?sequence=1&isAllowed=y
  14. Espinoza, C., Clemente, W., & Martinez, C. (2020). Meteorological variability and use of solar energy in the Mantaro Valley, Peru. International Journal of Renewable Energy Research, 10(3), 1307–1315. https://www.ijrer.org/ijrer/index.php/ijrer/article/view/11274
  15. Fuqiang, W., Zhennan, G., Jianyu, T., Lanxin, M., Zhenyu, Y., & Heping, T. (2016). Transient thermal performance response characteristics of porous-medium receiver heated by multi-dish concentrator. International Communications in Heat and Mass Transfer, 75, 36–41. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.028
  16. Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., & Linhua, L. (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 1314–1328. https://doi.org/10.1016/j.rser.2017.05.174
  17. Gonzales, J. (2012). Energías renovables. Editorial Reverté.
  18. Jones, E. S., Alden, R. E., Gong, H., Frye, A. G., Colliver, D., & Ionel, D. M. (2020). The Effect of High Efficiency Building Technologies and PV Generation on the Energy Profiles for Typical US Residences. 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), 471–476. https://doi.org/10.1109/ICRERA49962.2020.9242665
  19. Megalingam, R. K., & Gedela, V. V. (2017). Solar powered automated water pumping system for eco-friendly irrigation. 2017 International Conference on Inventive Computing and Informatics (ICICI), 623–626. https://doi.org/10.1109/ICICI.2017.8365208
  20. Mekonnen, B. A., Liyew, K. W., & Tigabu, M. T. (2020). Solar cooking in Ethiopia: Experimental testing and performance evaluation of SK14 solar cooker. Case Studies in Thermal Engineering, 22, 100766. https://doi.org/10.1016/j.csite.2020.100766
  21. Naciones Unidas. (2017). La población mundial aumentará en 1.000 millones para 2030. Perspectivas de La Población Mundial 2017. https://www.un.org/development/desa/es/news/population/world-population-prospects-2017.html
  22. Nakata, C., & Hwang, J. (2020). Design thinking for innovation: Composition, consequence, and contingency. Journal of Business Research, 118, 117–128. https://doi.org/10.1016/j.jbusres.2020.06.038
  23. Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering Design. A Systematic Approach (Tercera E). Springer. https://doi.org/10.1109/9780470546338.ch33
  24. Riba, C. (2002). Diseño concurrente (Universidad Politecnica de Cataluña (ed.); Primera ed). Ediciones UPC.
  25. Salgado Conrado, L., Rodriguez-Pulido, A., & Calderón, G. (2017). Thermal performance of parabolic trough solar collectors. Renewable and Sustainable Energy Reviews, 67, 1345–1359. https://doi.org/10.1016/j.rser.2016.09.071
  26. Ulrich, K. T., & Eppinger, S. D. (2013). Diseño y desarrollo de productos (Quinta Edi). McGraw-Hill Interamericana.
  27. Wendelin, T., Dobos, A., & Lewandowski, A. (2013). SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems. In National Renewable Energy Laboratory (Issue October). NREL. https://www.nrel.gov/docs/fy14osti/59163.pdf
  28. Zou, B., Dong, J., Yao, Y., & Jiang, Y. (2017). A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo Ray Tracing method based on theoretical analysis. Solar Energy, 147, 189–201. https://doi.org/10.1016/j.solener.2017.01.055