Vol. 20 Núm. 2 (2022): Fuentes, el reventón energético
Artículos

Aspectos ambientales de los recursos naturales y su relación con la explotación de combustibles fósiles: una reflexión sobre la sostenibilidad

Angie Tatiana Ortega-Ramirez
Fundación Universidad de América, Grupo de Investigación Gestión Ambiente y Sostenibilidad (GIGAS).
Danilo Gilberto Beltrán Rodríguez
Fundación Universidad de América, Grupo de Investigación Gestión Ambiente y Sostenibilidad (GIGAS).
Nubia Liliana Becerra Ospina
Fundación Universidad de América, Grupo de Investigación Gestión Ambiente y Sostenibilidad (GIGAS).
Wanessa K. Lima e Silva
LOTEP Laboratorio de Operações e Tecnologias Energéticas Aplicadas na Indústria do Petróleo, Faculty of Petroleum Engineering, Federal University of Pará, Salinópolis, Brazil.
Evelyn Campelo
LOTEP Laboratorio de Operações e Tecnologias Energéticas Aplicadas na Indústria do Petróleo, Faculty of Petroleum Engineering, Federal University of Pará, Salinópolis, Brazil.
Annara Myrella Moura Da Silva Sousa
Universidade Federal de Campina Grande, Campina Grande, Brazil.

Publicado 2022-12-07

Palabras clave

  • Impacto ambiental,
  • Recursos naturales,
  • Hidrocarburos,
  • Agua,
  • Suelo,
  • Aire,
  • Explotación,
  • Mitigación
  • ...Más
    Menos

Cómo citar

Ortega-Ramirez, A. T., Beltrán Rodríguez , D. G. ., Becerra Ospina , N. L. ., Lima e Silva , W. K. ., Campelo, E. ., & Da Silva Sousa, A. M. M. . (2022). Aspectos ambientales de los recursos naturales y su relación con la explotación de combustibles fósiles: una reflexión sobre la sostenibilidad. Fuentes, El reventón energético, 20(2), 43–54. https://doi.org/10.18273/revfue.v20n2-2022004

Resumen

Los combustibles fósiles se utilizan en todo el mundo como las principales fuentes de energía, están presentes en la naturaleza gracias a la acumulación de biomasa durante millones de años. Aunque muchos países dependen en gran medida de las exportaciones de petróleo y sus derivados para mantener su economía, los combustibles fósiles han causado contaminación al medio ambiente debido a su extracción del subsuelo, causando efectos nocivos en el ser humano y el medio ambiente como resultado de las operaciones relacionadas con su explotación. Este artículo de revisión bibliográfica expone una serie de consideraciones teóricas y conceptuales sobre los efectos de la exploración, explotación y producción de combustibles fósiles como el petróleo y el gas, centrándose en los efectos negativos que estas actividades causan sobre los recursos naturales en Colombia y América Latina, además de considerar diferentes medidas para prevenir y mitigar los impactos causados.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Abudu, H., Cai, X., Lin, B. (2022). How upstream petroleum industry affects economic growth and development in petroleum producing-countries: Evidence from Ghana. Energy, 260, art. no. 125139, doi: 10.1016/j.energy.2022.125139
  2. Álvarez Martínez, O. (2016). The environmental impacts of the use of geological resources. Didactic Publications, 1(72), 42-46.
  3. Ángeles Mendiola, O. J. (2018). Current situation of pollution from hydrocarbon activities in the Peruvian jungle. Lima, Peru: Retrieved from http://repositorio.lamolina.edu.pe/handle/UNALM/3213
  4. Ardila Barbosa, W. Y. (2014). Impacts of the oil industry on the environment - upstream http://tangara.uis.edu.co › biblioweb › thesis.
  5. Arévalo Peña, J. J. (2018). Evaluation of drilling fluid treatment alternatives in the oil industry.
  6. Avellaneda Cusaría, A. (2006). Oil, environmental security and marine oil exploration in Colombia. Quito: Red Iconos. https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3167243.
  7. Ávila-García, P. (2016). Towards a political ecology of water in Latin America. Journal of Social Studies (Bogotá, Colombia), (55), 18-31. doi:10.7440/Res55.2016.01 http://journals.openedition.org/revestudsoc/9602.
  8. Ayuso, M. E. (2017). Analysis of the practices of flaring and venting of associated natural gas. ENERLAC. Energy Journal of Latin America and the Caribbean, 1(1) Retrieved from http://enerlac.olade.org/index.php/ENERLAC/article/view/15.
  9. Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology & Biotechnology, 32(11), 1-18. doi:10.1007/s11274-016-2137-x.
  10. Bedoya Vallejos, P. A. (2018). Evaluation of the level of environmental pollution by hydrocarbon activities in the Madidi National Park and Integrated Management Area and its impact on the economic and social sector of the municipality of San Buenaventura http://repositorio.umsa.bo/xmlui/handle/123456789/16995.
  11. Blanco, N., & Giraud, L. (2022). Optimización de la gestión ambiental y económica del recurso energético biomasa para la generación de Energía Eléctrica en Nicaragua. Revista Fuentes: El Reventón Energético, 20(1), 87–103. https://doi.org/10.18273/revfue.v20n1-2022008
  12. Botello, A. (2016). Marine pollution and the urgency of its legislation., 1-8. http://poseidon.posgrado.unam.mx/publicaciones/ant_omnia/23/07.pdf.
  13. Cajamarca Carrazco, D. I., Paredes Godoy, M. M., Cabrera Escobar, J. O., & Guananga Díaz, N. I. (2019). The sustainability of the Yasuní National Park, a private right of the Ecuadorian state to the Waorani people for oil activity. Caribbean Social Sciences. Retrieved from https://www.eumed.net/rev/caribe/2019/03/parque-nacional-yasuni.html.
  14. Camacho Triana, J. L. (2020). Evaluation of water management in the extraction and production of hydrocarbons with a view to defining treatment and reuse alternatives. https://repositorio.unal.edu.co/handle/unal/78636.
  15. Cano, N. A., Céspedes-Zuluaga, S., Guerrero-Martin, C., & Gallego, D. (2022). Exergy and emergy: complementary tools for assessing the environmental sustainability use of biosolids generated in wastewater-treatment plant for energy-production. Química Nova, 45, 4-15. https://doi.org/10.21577/0100-4042.20170806
  16. Castañeda Martínez, A. (2019). Environmental risks on water and soil due to the provision of drilling cuts in the Castilla field. Bogota D.C.
  17. Castro, F., Forero, D., Ramírez, J., & Reina, M. (2014). Evaluation of the economic contribution of the Colombian hydrocarbons sector in the face of various production scenarios. F EDESARROLLO, Unidad de Planeación Minero Energética –UPME. Bogotá: FEDESARROLLO. Obtained from http://hdl.handle.net/11445/1688.
  18. Cruz Apunte, J. D., & Lincango Tuquerres, J. R. (2021). Evaluation of the bioremediation process of soils contaminated by total petroleum hydrocarbons using trichoderma sp. And bacillus pumilus, through the laboratory-scale biostack system.
  19. Delgado Mendez, C. G. (2020). Environmental and economic impacts derived from the practice of fracking., 1-29. https://repository.unilibre.edu.co/handle/10901/18748.
  20. Delgado Romero, L. N. (2018). Alternatives for reducing the burning and venting of associated gas in the oil industry. Bogotá D.C.: Fundación Universidad América. http://hdl.handle.net/20.500.11839/7125.
  21. Ecopetrol S.A. (2019). Integrated sustainable management report. Bogota D.C.
  22. Elizaveta, M., & Maria, U. (2021). Ecological aspects of sorbents use to improve the efficiency of bioremediation on oil-contaminated lands. Revista Fuentes, el reventón energético, 19(1), 65-73. https://doi.org/10.18273/revfue.v19n1-2021006
  23. Environmental Protection Agency. (2021). Understanding global warming potentials. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials.
  24. Finer, M., Jenkins, C.N., Pimm, S.L., Keane, B., Ross, C. (2008). Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE, 3 (8), art. no. e 2932. doi: 10.1371/journal.pone.0002932.
  25. Galván Rico, L., Reyes Gil, R. E., Guédez Mozur, C., & De Armas, D. (2007). The macro-processes of the oil industry and their environmental consequences. University, Science and Technology, 11(43), 91.
  26. García Münzer, D. G. (2005). Application of decision models and risk assessment in oil exploration, drilling and exploitation.
  27. García Reyes, J. S., Cabarcas Simancas, M. E., & Herrera Velasco, S. L. (2017). Production water management for gas projects in deep and ultra-deep waters of the Colombian Caribbean. Sources: The Energy Blowout, 15(2), 89-105. https://doi.org/10.18273/revfue.v15n2-2017008.
  28. Gómez Polanco, D. G. (2021). Scope of the requirements of ISO 14001:2015 as an operational improvement strategy for the hydrocarbons sector in Colombia. https://hdl.handle.net/20.500.11839/8399.
  29. Gómez-Duarte, O. G. (2018). Water pollution in low- and middle-income countries, a public health problem. Journal of the Faculty of Medicine, 66(1), 7-8.
  30. Harvey, P., Campanella, B., Castro, P., Harms, H., Lichtfouse, E., Schäffner, A., . . .Werck-Reichhart, D. (2002). Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environmental Science and Pollution Research International, 9(1), 29-47. doi:10.1007/BF02987315.
  31. Jiménez Santafé, N P. (2019). Design of QGIS tool for the analysis of the dispersion in the air of the particulate matter generated in the hydrocarbon exploration phase through graphic simulation. scimitar case study, Santander. http://hdl.handle.net/20.500.12495/2603.
  32. Joaquín Benavides López de Mesa, Gladis Quintero, Andrea Liliana Guevara Vizcaíno, Diana Carolina Jaimes Cáceres, Sandra Milena Gutiérrez Riaño, & Johanna Miranda García. (2006). Bioremediation of soils contaminated with petroleum-based hydrocarbons. Nova, 4(5) doi:10.22490/24629448.351.
  33. Jong, J., Tan, T.Q., Kessler, F.L. (2021). Environmental impacts and social concerns-A case study associated with petroleum exploration activities from onshore Baram Delta, NW Sarawak. Bulletin of the Geological Society of Malaysia, 72, pp. 89-100. doi: 10.7186/bgsm72202107.
  34. Machado Allison, A. (2017). Conservation of aquatic environments: Oil and other mining activities in Venezuela. Venezuela's Rivers at Risk, 189-201. https://www.academia.edu/download/52092405/2017_Rios_Riesgo_Venezuela_V1_libro_baja.pdf#page=191.
  35. Martínez Gómez, S. J. (2017). Factors of environmental pollution due to the development of oil projects in the El Ingeniero channel, municipality of Puerto Gaitán, Meta.
  36. Martínez-Hernández, J., Parra-Reyes, N., Guerrero-Martín, L. E., Camacho-Galindo, L. S., Salinas-Silva, R., Guerrero, W. A., & Guerrero-Martín, C. A. (2022). A SWOT Analysis for Wind Energy Potential Assessment in Colombia. Revista Fuentes, El Reventón Energético, 20(1), 45–56. https://doi.org/10.18273/revfue.v20n1-2022005
  37. Mesa Mesa, L., & Hernández Falcón, J. (2017). Evaluation of the degree of oil pollution in the waters of the bay of Santiago de Cuba. Bolivian Journal of Chemistry, 34(2) http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S025054602017000200003&lng=es&tlng=es.
  38. Mesa, S. L., Orjuela, J. M., Ortega Ramírez, A. T., & Sandoval, J. (2018). Review of the current panorama of production water management in the Colombian oil industry. Management and Environment, 21(1), 87-98. doi:10.15446/ga. v21n1.69792.
  39. Ministry of Environment, Housing and Territorial Development. (2010). General methodology for the presentation of environmental studies. Bogota D.C.
  40. Ortega Ramirez, A. T., & Marin Maldonado, D. F. (2021). Fracking as a guarantee of energy security in countries with low conventional oil reserves. Inge Cuc, 17(1), 201-215. https://doi.org/10.17981/ingecuc.17.1.2021.16.
  41. Ortega Ramírez, A. T., Marín Maldonado, D. F., & Ochoa Rodríguez, E. D. (2019). General review of high-water production in the oil industry. Revista Fuentes el Reventón Energético, 17(2), 39-50. doi:10.18273/revfue. v17n2-2019005.
  42. Ortiz López, D. F. (2016). Index of environmental pollution due to oil activity in the Ecuadorian Amazon Retrieved from http://bibdigital.epn.edu.ec/handle/15000/16956.
  43. Pérez, Y., López, S., Rodríguez, A., & Ramos, S. (2019). Socio-environmental impact assessment, due to oil spill from a pipeline in Comalcalco, Tabasco. Journal of basic sciences, 5(15), 134-152. doi: https://doi.org/10.19136/jobs.a5n15.3574.
  44. Pieprzyk, B., & Rojas Hilje, P. (2015). Flaring and venting of associated petroleum gas. (). Energy Research Architecture. https://www.era-er.com/es/system/files/downloads/flaring_venting_es.pdf.
  45. Portillo, G. (2018). Green renewables. Retrieved in 2021, from https://www.renovablesverdes.com/combustibles-fosiles/.
  46. Rangel Vega, A. (2020). Characterization of hydrocarbon-contaminated sites in Peru http://repositorio.unp.edu.pe/handle/UNP/2079.
  47. Rojas Hidalgo, M. Á, & Cely Garzón, J. C. (2020). Identification of best practices to minimize the possible environmental impacts of surface treatment of return fluid in hydraulic fracturing operations in the La Luna Formation, Colombia, based on the experience of an international case. Bogotá D.C.: Fundación Universidad de América. https://hdl.handle.net/20.500.11839/8052.
  48. Rojas Isaza, D., Salazar Cataño, J., Montoya Escobar, D., & Muñoz Ciro, É. (2020). Problem of air pollution in Colombia. Eeolus, 18(1), 109-122. Retrieved from http://revistaeolo.fconvida.org/index.php/eolo/article/view/12/11.
  49. Romero Fuentes, L. M. (2016). Analysis of the environmental risks associated with the exploitation of unconventional deposits from an international context and their application in Colombia. https://hdl.handle.net/20.500.11839/640.
  50. Sánchez Arévalo, D., & Rodríguez, C. M. (2018). Case study oil spills and the need for their care from a health perspective. FAGROPEC - Faculty of Agricultural Sciences, 10(1), 26-29. https://www.uniamazonia.edu.co/revistas/index.php/fagropec/article/view/1544/2092.
  51. Sánchez Sánchez, G. K. (2017). Genoxicity in human lymphocytes of water contaminated by hydrocarbons, from well 4 located in Shushufindi aguarico – Ecuador http://dspace.utpl.edu.ec/handle/20.500.11962/21000.
  52. Sánchez, M. (2016). The greenhouse effect. Biocenosis, 21(2), 51-54. Obtained from https://revistas.uned.ac.cr/index.php/biocenosis/article/view/1274.
  53. Silupú Vega, K. F. (2019). Technical-operational improvements to optimize hydrocarbon production while minimizing environmental impact. http://repositorio.unp.edu.pe/handle/UNP/2049.
  54. Trujillo Quintero, H. F., Losada Cubillos, J. J., & Rodríguez Zambrano, H. (2017). Colombian Amazon, oil and socio-environmental conflicts. Scientific Journal "General José María Córdova.", 15(20), 209-223. doi:10.21830/19006586.181.
  55. Vargas Guarín, L. D. (2020). Environmental impacts of oil production in Colombia and its relationship with technological innovation in the last fifteen years https://hdl.handle.net/20.500.11839/7843.
  56. Velásquez Arias, J. A. (2017). Contamination of soil and water by hydrocarbons in Colombia. Analysis of phytoremediation as a biotechnological recovery strategy. Journal of Agricultural and Environmental Research, 8(1), 151-167. doi:10.22490/21456453.1846.
  57. Widdel, F., & Rabus, R. (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 12(3), 259-276.