HOW TO PLAN FOR RESIDENTIAL SMART METER IMPLEMENTATION? A META-ANALYSIS OF INTERNATIONAL RESULTS
Published 2023-03-09
Keywords
- Smart Meters,
- Acceptance,
- Meta-analysis
How to Cite
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Although smart residential meters play an important role in the smart grid and in the rational use of clean energy sources, recent
results show problems in smart meters’ implementation due to lack of acceptance by consumers. In this context, this work presents a meta-analysis of studies on the acceptance of smart meters to statistically present factors that positively and negatively influence acceptance. After a selection of studies (n = 5,637), the Hunter-Schmidt method of meta-analysis was applied. The results show that all the estimated relations are significant. The factors that have the greatest influence on the acceptance of smart meters are Hedonistic Motivation, Performance Expectation, and Effort Expectation
Downloads
References
- Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://www.sciencedirect.com/science/article/abs/pii/074959789190020T
- Alkawsi, G. A., & Ali, N. B. (2018). A Systematic Review of Individuals’ Acceptance of IOT-based Technologies. International Journal of Engineering & Technology, 7(4.35), 136–142. https://doi.org/10.14419/ijet.v7i4.35.22342
- Alkawsi, G. A., Ali, N. B., & Alghushami, A. (2018). Toward Understanding Individuals’ Acceptance of Internet of Things–Based Services: Developing an Instrument to Measure the Acceptance of Smart Meters. Journal of Theoretical and Applied Information Technology, 96(13), 4265–4281. http://www.jatit.org/volumes/Vol96No13/26Vol96No13.pdf
- Ataseven, C., & Nair, A. (2017). Assessment of supply chain integration and performance relationships: A meta-analytic investigation of the literature. International Journal of Production Economics, 185, 252–265. https://doi.org/10.1016/j.ijpe.2017.01.007
- Avancini, D. B., Rodrigues, J. J. P. C., Martins, S. G. B., Rabêlo, R. A. L., Al-Muhtadi, J., & Solic, P. (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217, 702–715. https://doi.org/10.1016/j.jclepro.2019.01.229
- Bacon, D. R., Sauer, P. L., & Young, M. (1995). Composite Reliability in Structural Equations Modeling. Educational and Psychological Measurement, 55(3), 394–406. https://doi.org/10.1177/0013164495055003003
- Balta-Ozkan, N., Amerighi, O., & Boteler, B. (2014). A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: reflections for policy and future research. Technology Analysis & Strategic Management, 26(10), 1176–1195. https://doi.org/10.1080/09537325.2014.975788
- Bitencourt, C. C., de Oliveira Santini, F., Zanandrea, G., Froehlich, C., & Ladeira, W. J. (2020). Empirical generalizations in eco-innovation: A meta-analytic approach. Journal of Cleaner Production, 245, 118721. https://doi.org/10.1016/j.jclepro.2019.118721
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. International Statistical Review, 77 (3), 478-479 https://doi.org/10.1111/j.1751-5823.2009.00095_15.x
- Boudet, H. S. (2019). Public perceptions of and responses to new energy technologies. Nature Energy, 4, 446–455. https://doi.org/10.1038/s41560-019-0399-x
- Buchanan, K., Banks, N., Preston, I., & Russo, R. (2016). The British public’s perception of the UK smart metering initiative: Threats and opportunities. Energy Policy, 91, 87–97. https://doi.org/10.1016/j.enpol.2016.01.003
- Buchanan, K., Russo, R., & Anderson, B. (2015). The question of energy reduction: The problem(s) with feedback. Energy Policy, 77, 89–96. https://doi.org/10.1016/j.enpol.2014.12.008
- Bugden, D., & Stedman, R. (2019). A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research & Social Science, 47 (January 2019), 137–145. https://doi.org/10.1016/j.erss.2018.08.025
- Card, N. A. (2012). Applied meta-analysis for social science research (1o ed). Guilford Publications.
- Chen, C., Xu, X., & Arpan, L. (2017). Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States. Energy Research & Social Science, 25, 93–104. https://doi.org/10.1016/j.erss.2016.12.011
- Chen, K.-Y., & Yeh, C.-F. (2017). Factors affecting adoption of smart meters in the post-Fukushima era in Taiwan: an extended protection motivation theory perspective. Behaviour & Information Technology, 36(9), 955–969. https://doi.org/10.1080/0144929X.2017.1317363
- Chou, J.-S., & Yutami, I. G. A. N. (2014). Smart meter adoption and deployment strategy for residential buildings in Indonesia. Applied Energy, 128, 336–349. https://doi.org/10.1016/j.apenergy.2014.04.083
- Chou, J.-S., Kim, C., Ung, T.-K., Yutami, I. G. A. N., Lin, G.-T., & Son, H. (2015). Cross-country review of smart grid adoption in residential buildings. Renewable and Sustainable Energy Reviews, 48, 192–213. https://doi.org/10.1016/j.rser.2015.03.055
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
- Darby, S. (2010). Smart metering: what potential for householder engagement? Building Research & Information, 38(5), 442–457. https://doi.org/10.1080/09613218.2010.492660
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
- De Mattos, C. S., Fettermann, D. C., & Cauchick-Miguel, P. A. (2021). Service modularity: literature overview of concepts, effects, enablers, and methods. The Service Industries Journal, 41(15-16), 1007-1028. https://doi.org/10.1080/02642069.2019.1572117
- Düştegör, D., Sultana, N., Felemban, N., & Al Qahtani, D. (2018). A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications. Utilities Policy, 50, 26–39. https://doi.org/10.1016/j.jup.2017.09.009
- Echeveste, M. E. S., Rozenfeld, H., & Fettermann, D. D. C. (2017). Customizing practices based on the frequency of problems in new product development process. Concurrent Engineering, 25(3), 245-261. https://doi.org/10.1177/1063293X16686154
- Ellabban, O., & Abu-Rub, H. (2016). Smart grid customers’ acceptance and engagement: An overview. Renewable and Sustainable Energy Reviews, 65, 1285–1298. https://doi.org/10.1016/j.rser.2016.06.021
- Fensel, A., Tomic, S., Kumar, V., Stefanovic, M., Aleshin, S. V., & Novikov, D. O. (2013). SESAME-S: Semantic smart home system for energy efficiency. Informatik-Spektrum, 36(1), 46–57. https://doi.org/10.1007/s00287-012-0665-9
- Fettermann, D. C., Borriello, A., Pellegrini, A., Cavalcante, C. G., Rose, J. M., & Burke, P. F. (2021). Getting smarter about household energy: the who and what of demand for smart meters. Building Research & Information, 49(1), 100-112. https://doi.org/10.1080/09613218.2020.1807896
- Fettermann, D. C., Cavalcante, C. G. S., Ayala, N. F., & Avalone, M. C. (2020). Configuration of a smart meter for Brazilian customers. Energy Policy, 139, 111309. https://doi.org/10.1016/j.enpol.2020.111309
- Fishbein, M. (1976). A Behavior Theory Approach to the Relations between Beliefs about an Object and the Attitude Toward the Object. In Mathematical Models in Marketing. Lecture Notes in Economics and Mathematical Systems (Operations Research) (p. 87–88). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-51565-1_25
- Gimpel, H., Graf, V., & Graf-Drasch, V. (2020). A comprehensive model for individuals’ acceptance of smart energy technology – A meta-analysis. Energy Policy, 138(April 2019), 111196. https://doi.org/10.1016/j.enpol.2019.111196
- Girod, B., Mayer, S., & Nägele, F. (2017). Economic versus belief-based models: Shedding light on the adoption of novel green technologies. Energy Policy, 101(November 2016), 415–426. https://doi.org/10.1016/j.enpol.2016.09.065
- Glass, G. V. (1976). Primary, Secondary, and Meta-Analysis of Research. Educational Researcher, 5(10), 3–8. https://doi.org/10.3102/0013189X005010003
- Gumz, J., & Fettermann, D. C. (2021). What improves smart meters' implementation? A statistical meta-analysis on smart meters' acceptance. Smart and Sustainable Built Environment, Ahead-of-print. https://doi.org/10.1108/SASBE-05-2021-0080
- Gumz, J., Fettermann, D. C., Frazzon, E. M., & Kück, M. (2022). Using Industry 4.0’s Big Data and IoT to Perform Feature-Based and Past Data-Based Energy Consumption Predictions. Sustainability, 14(20), 13642. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su142013642
- Hess, D. J., & Coley, J. S. (2014). Wireless smart meters and public acceptance: The environment, limited choices, and precautionary politics. Public Understanding of Science, 23(6), 688–702. https://doi.org/10.1177/0963662512464936
- Hunter, J. E., & Schmidt, F. L. (1990). Dichotomization of Continuous Variables: The Implications for Meta-Analysis. Journal of Applied Psychology, 75(3), 334–349. https://doi.org/10.1037/0021-9010.75.3.334
- Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings (2o ed). Sage.
- IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Orgs.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change sustainable development, and efforts to eradicate poverty, (p. 3–35). World Meteorological Organization. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf
- Jaramillo, N. C., Cardona, C. J. F., & Henao, J. D. V. (2014). Smart meters adoption: recent advances and future trends. DYNA, 81(183), 221–230. https://doi.org/10.15446/dyna.v81n183.38148
- Kallman, M. E., & Frickel, S. (2019). Power to the people: industrial transition movements and energy populism. Environmental Sociology, 5(3), 255–268. https://doi.org/10.1080/23251042.2018.1531497
- Kaufmann, S., Künzel, K., & Loock, M. (2013). Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland. Energy Policy, 53, 229–239. https://doi.org/10.1016/j.enpol.2012.10.072
- Klöckner, C. A. (2013). A comprehensive model of the psychology of environmental behaviour-A meta-analysis. Global Environmental Change, 23(5), 1028–1038. https://doi.org/10.1016/j.gloenvcha.2013.05.014
- Kowalska-Pyzalska, A., Byrka, K., & Serek, J. (2020). How to foster the adoption of electricity smart meters? A longitudinal field study of residential consumers. Energies, 13(18), 4737. https://doi.org/10.3390/en13184737
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100
- Mogles, N., Walker, I., Ramallo-González, A. P., Lee, J., Natarajan, S., Padget, J., Gabe-Thomas, E., Lovett, T., Ren, G., Hyniewska, S., O’Neill, E., Hourizi, R., & Coley, D. (2017). How smart do smart meters need to be? Building and Environment, 125, 439–450. https://doi.org/10.1016/j.buildenv.2017.09.008
- Nair, A. (2006). Meta-analysis of the relationship between quality management practices and firm performance-implications for quality management theory development. Journal of Operations Management, 24(6), 948–975. https://doi.org/10.1016/j.jom.2005.11.005
- Nascimento, D. R., Tortorella, G. L., & Fettermann, D. (2022). Association between the benefits and barriers perceived by the users in smart home services implementation. Kybernetes, (ahead-of-print). https://doi.org/10.1108/K-02-2022-0232
- Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory Third Edition. In McGraw-Hili, Inc (3o ed). McGraw-Hill.
- Otto, A. S., Szymanski, D. M., & Varadarajan, R. (2020). Customer satisfaction and firm performance: insights from over a quarter century of empirical research. Journal of the Academy of Marketing Science, 48(3), 543–564. https://doi.org/10.1007/s11747-019-00657-7
- Park, C.-K., Kim, H.-J., & Kim, Y.-S. (2014). A study of factors enhancing smart grid consumer engagement. Energy Policy, 72, 211–218.
- Peters, D., Axsen, J., & Mallett, A. (2018). The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renewable and Sustainable Energy Reviews, 82, 1939–1951. https://doi.org/10.1016/j.rser.2017.06.020
- REN21. (2020). Renewables 2020 Global Status Report. REN21 Secretariat. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf
- Santini, F. de O., Ladeira, W. J., Pinto, D. C., Herter, M. M., Sampaio, C. H., & Babin, B. J. (2020). Customer engagement in social media: a framework and meta-analysis. Journal of the Academy of Marketing Science, 48, 1211–1228. https://doi.org/10.1007/s11747-020-00731-5
- Schaffers, H., Ratti, C., & Komninos, N. (2012). Special issue on smart applications for smart cities - New Approaches to Innovation: Guest Editors’ Introduction. Journal of Theoretical and Applied Electronic Commerce Research, 7(3). https://doi.org/10.4067/S0718-18762012000300005
- Schmidt, F. L. (2015). History and development of the Schmidt-Hunter meta-analysis methods. Research Synthesis Methods, 6(3), 232–239. https://doi.org/10.1002/jrsm.1134
- Van de Kaa, G., Fens, T., Rezaei, J., Kaynak, D., Hatun, Z., & Tsilimeni-Archangelidi, A. (2019). Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method. Renewable and Sustainable Energy Reviews, 103(January 2017), 320–327. https://doi.org/10.1016/j.rser.2018.12.035
- Venkatesh,V., Morris, M.G., Davis, G.B., & Davis. F.D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
- Venkatesh, V., Thong, J.Y.L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
- Wemyss, D., Castri, R., Cellina, F., De Luca, V., Lobsiger-Kägi, E., & Carabias, V. (2018). Examining community-level collaborative vs. competitive approaches to enhance household electricity-saving behavior. Energy Efficiency, 11, 2057–2075. https://doi.org/10.1007/s12053-018-9691-z
- Xu, L., Peng, X., Pavur, R., & Prybutok, V. (2020). Quality management theory development via meta-analysis. International Journal of Production Economics, 229, 107759. https://doi.org/10.1016/j.ijpe.2020.107759
- Yang, B., Liu, S., Gaterell, M., & Wang, Y. (2019). Smart metering and systems for low-energy households: challenges, issues and benefits. Advances in Building Energy Research, 13(1), 80–100. https://doi.org/10.1080/17512549.2017.1354782