Vol. 21 No. 1 (2023): Fuentes, el reventón energético
Articles

HOW TO PLAN FOR RESIDENTIAL SMART METER IMPLEMENTATION? A META-ANALYSIS OF INTERNATIONAL RESULTS

Jonathan Gumz
Universidade Federal de Santa Catarina (UFSC), Santa Catarina - Brasil.
Diego de Castro Fettermann
Universidade Federal de Santa Catarina (UFSC), Santa Catarina - Brasil.

Published 2023-03-09

Keywords

  • Smart Meters,
  • Acceptance,
  • Meta-analysis

How to Cite

Gumz, J. ., & de Castro Fettermann, D. (2023). HOW TO PLAN FOR RESIDENTIAL SMART METER IMPLEMENTATION? A META-ANALYSIS OF INTERNATIONAL RESULTS. Fuentes, El reventón energético, 21(1), 19–37. https://doi.org/10.18273/revfue.v21n1-2023002

Abstract

Although smart residential meters play an important role in the smart grid and in the rational use of clean energy sources, recent
results show problems in smart meters’ implementation due to lack of acceptance by consumers. In this context, this work presents a meta-analysis of studies on the acceptance of smart meters to statistically present factors that positively and negatively influence acceptance. After a selection of studies (n = 5,637), the Hunter-Schmidt method of meta-analysis was applied. The results show that all the estimated relations are significant. The factors that have the greatest influence on the acceptance of smart meters are Hedonistic Motivation, Performance Expectation, and Effort Expectation

Downloads

Download data is not yet available.

References

  1. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://www.sciencedirect.com/science/article/abs/pii/074959789190020T
  2. Alkawsi, G. A., & Ali, N. B. (2018). A Systematic Review of Individuals’ Acceptance of IOT-based Technologies. International Journal of Engineering & Technology, 7(4.35), 136–142. https://doi.org/10.14419/ijet.v7i4.35.22342
  3. Alkawsi, G. A., Ali, N. B., & Alghushami, A. (2018). Toward Understanding Individuals’ Acceptance of Internet of Things–Based Services: Developing an Instrument to Measure the Acceptance of Smart Meters. Journal of Theoretical and Applied Information Technology, 96(13), 4265–4281. http://www.jatit.org/volumes/Vol96No13/26Vol96No13.pdf
  4. Ataseven, C., & Nair, A. (2017). Assessment of supply chain integration and performance relationships: A meta-analytic investigation of the literature. International Journal of Production Economics, 185, 252–265. https://doi.org/10.1016/j.ijpe.2017.01.007
  5. Avancini, D. B., Rodrigues, J. J. P. C., Martins, S. G. B., Rabêlo, R. A. L., Al-Muhtadi, J., & Solic, P. (2019). Energy meters evolution in smart grids: A review. Journal of Cleaner Production, 217, 702–715. https://doi.org/10.1016/j.jclepro.2019.01.229
  6. Bacon, D. R., Sauer, P. L., & Young, M. (1995). Composite Reliability in Structural Equations Modeling. Educational and Psychological Measurement, 55(3), 394–406. https://doi.org/10.1177/0013164495055003003
  7. Balta-Ozkan, N., Amerighi, O., & Boteler, B. (2014). A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: reflections for policy and future research. Technology Analysis & Strategic Management, 26(10), 1176–1195. https://doi.org/10.1080/09537325.2014.975788
  8. Bitencourt, C. C., de Oliveira Santini, F., Zanandrea, G., Froehlich, C., & Ladeira, W. J. (2020). Empirical generalizations in eco-innovation: A meta-analytic approach. Journal of Cleaner Production, 245, 118721. https://doi.org/10.1016/j.jclepro.2019.118721
  9. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. International Statistical Review, 77 (3), 478-479 https://doi.org/10.1111/j.1751-5823.2009.00095_15.x
  10. Boudet, H. S. (2019). Public perceptions of and responses to new energy technologies. Nature Energy, 4, 446–455. https://doi.org/10.1038/s41560-019-0399-x
  11. Buchanan, K., Banks, N., Preston, I., & Russo, R. (2016). The British public’s perception of the UK smart metering initiative: Threats and opportunities. Energy Policy, 91, 87–97. https://doi.org/10.1016/j.enpol.2016.01.003
  12. Buchanan, K., Russo, R., & Anderson, B. (2015). The question of energy reduction: The problem(s) with feedback. Energy Policy, 77, 89–96. https://doi.org/10.1016/j.enpol.2014.12.008
  13. Bugden, D., & Stedman, R. (2019). A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research & Social Science, 47 (January 2019), 137–145. https://doi.org/10.1016/j.erss.2018.08.025
  14. Card, N. A. (2012). Applied meta-analysis for social science research (1o ed). Guilford Publications.
  15. Chen, C., Xu, X., & Arpan, L. (2017). Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States. Energy Research & Social Science, 25, 93–104. https://doi.org/10.1016/j.erss.2016.12.011
  16. Chen, K.-Y., & Yeh, C.-F. (2017). Factors affecting adoption of smart meters in the post-Fukushima era in Taiwan: an extended protection motivation theory perspective. Behaviour & Information Technology, 36(9), 955–969. https://doi.org/10.1080/0144929X.2017.1317363
  17. Chou, J.-S., & Yutami, I. G. A. N. (2014). Smart meter adoption and deployment strategy for residential buildings in Indonesia. Applied Energy, 128, 336–349. https://doi.org/10.1016/j.apenergy.2014.04.083
  18. Chou, J.-S., Kim, C., Ung, T.-K., Yutami, I. G. A. N., Lin, G.-T., & Son, H. (2015). Cross-country review of smart grid adoption in residential buildings. Renewable and Sustainable Energy Reviews, 48, 192–213. https://doi.org/10.1016/j.rser.2015.03.055
  19. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
  20. Darby, S. (2010). Smart metering: what potential for householder engagement? Building Research & Information, 38(5), 442–457. https://doi.org/10.1080/09613218.2010.492660
  21. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
  22. De Mattos, C. S., Fettermann, D. C., & Cauchick-Miguel, P. A. (2021). Service modularity: literature overview of concepts, effects, enablers, and methods. The Service Industries Journal, 41(15-16), 1007-1028. https://doi.org/10.1080/02642069.2019.1572117
  23. Düştegör, D., Sultana, N., Felemban, N., & Al Qahtani, D. (2018). A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications. Utilities Policy, 50, 26–39. https://doi.org/10.1016/j.jup.2017.09.009
  24. Echeveste, M. E. S., Rozenfeld, H., & Fettermann, D. D. C. (2017). Customizing practices based on the frequency of problems in new product development process. Concurrent Engineering, 25(3), 245-261. https://doi.org/10.1177/1063293X16686154
  25. Ellabban, O., & Abu-Rub, H. (2016). Smart grid customers’ acceptance and engagement: An overview. Renewable and Sustainable Energy Reviews, 65, 1285–1298. https://doi.org/10.1016/j.rser.2016.06.021
  26. Fensel, A., Tomic, S., Kumar, V., Stefanovic, M., Aleshin, S. V., & Novikov, D. O. (2013). SESAME-S: Semantic smart home system for energy efficiency. Informatik-Spektrum, 36(1), 46–57. https://doi.org/10.1007/s00287-012-0665-9
  27. Fettermann, D. C., Borriello, A., Pellegrini, A., Cavalcante, C. G., Rose, J. M., & Burke, P. F. (2021). Getting smarter about household energy: the who and what of demand for smart meters. Building Research & Information, 49(1), 100-112. https://doi.org/10.1080/09613218.2020.1807896
  28. Fettermann, D. C., Cavalcante, C. G. S., Ayala, N. F., & Avalone, M. C. (2020). Configuration of a smart meter for Brazilian customers. Energy Policy, 139, 111309. https://doi.org/10.1016/j.enpol.2020.111309
  29. Fishbein, M. (1976). A Behavior Theory Approach to the Relations between Beliefs about an Object and the Attitude Toward the Object. In Mathematical Models in Marketing. Lecture Notes in Economics and Mathematical Systems (Operations Research) (p. 87–88). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-51565-1_25
  30. Gimpel, H., Graf, V., & Graf-Drasch, V. (2020). A comprehensive model for individuals’ acceptance of smart energy technology – A meta-analysis. Energy Policy, 138(April 2019), 111196. https://doi.org/10.1016/j.enpol.2019.111196
  31. Girod, B., Mayer, S., & Nägele, F. (2017). Economic versus belief-based models: Shedding light on the adoption of novel green technologies. Energy Policy, 101(November 2016), 415–426. https://doi.org/10.1016/j.enpol.2016.09.065
  32. Glass, G. V. (1976). Primary, Secondary, and Meta-Analysis of Research. Educational Researcher, 5(10), 3–8. https://doi.org/10.3102/0013189X005010003
  33. Gumz, J., & Fettermann, D. C. (2021). What improves smart meters' implementation? A statistical meta-analysis on smart meters' acceptance. Smart and Sustainable Built Environment, Ahead-of-print. https://doi.org/10.1108/SASBE-05-2021-0080
  34. Gumz, J., Fettermann, D. C., Frazzon, E. M., & Kück, M. (2022). Using Industry 4.0’s Big Data and IoT to Perform Feature-Based and Past Data-Based Energy Consumption Predictions. Sustainability, 14(20), 13642. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su142013642
  35. Hess, D. J., & Coley, J. S. (2014). Wireless smart meters and public acceptance: The environment, limited choices, and precautionary politics. Public Understanding of Science, 23(6), 688–702. https://doi.org/10.1177/0963662512464936
  36. Hunter, J. E., & Schmidt, F. L. (1990). Dichotomization of Continuous Variables: The Implications for Meta-Analysis. Journal of Applied Psychology, 75(3), 334–349. https://doi.org/10.1037/0021-9010.75.3.334
  37. Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings (2o ed). Sage.
  38. IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Orgs.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change sustainable development, and efforts to eradicate poverty, (p. 3–35). World Meteorological Organization. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf
  39. Jaramillo, N. C., Cardona, C. J. F., & Henao, J. D. V. (2014). Smart meters adoption: recent advances and future trends. DYNA, 81(183), 221–230. https://doi.org/10.15446/dyna.v81n183.38148
  40. Kallman, M. E., & Frickel, S. (2019). Power to the people: industrial transition movements and energy populism. Environmental Sociology, 5(3), 255–268. https://doi.org/10.1080/23251042.2018.1531497
  41. Kaufmann, S., Künzel, K., & Loock, M. (2013). Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland. Energy Policy, 53, 229–239. https://doi.org/10.1016/j.enpol.2012.10.072
  42. Klöckner, C. A. (2013). A comprehensive model of the psychology of environmental behaviour-A meta-analysis. Global Environmental Change, 23(5), 1028–1038. https://doi.org/10.1016/j.gloenvcha.2013.05.014
  43. Kowalska-Pyzalska, A., Byrka, K., & Serek, J. (2020). How to foster the adoption of electricity smart meters? A longitudinal field study of residential consumers. Energies, 13(18), 4737. https://doi.org/10.3390/en13184737
  44. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100
  45. Mogles, N., Walker, I., Ramallo-González, A. P., Lee, J., Natarajan, S., Padget, J., Gabe-Thomas, E., Lovett, T., Ren, G., Hyniewska, S., O’Neill, E., Hourizi, R., & Coley, D. (2017). How smart do smart meters need to be? Building and Environment, 125, 439–450. https://doi.org/10.1016/j.buildenv.2017.09.008
  46. Nair, A. (2006). Meta-analysis of the relationship between quality management practices and firm performance-implications for quality management theory development. Journal of Operations Management, 24(6), 948–975. https://doi.org/10.1016/j.jom.2005.11.005
  47. Nascimento, D. R., Tortorella, G. L., & Fettermann, D. (2022). Association between the benefits and barriers perceived by the users in smart home services implementation. Kybernetes, (ahead-of-print). https://doi.org/10.1108/K-02-2022-0232
  48. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory Third Edition. In McGraw-Hili, Inc (3o ed). McGraw-Hill.
  49. Otto, A. S., Szymanski, D. M., & Varadarajan, R. (2020). Customer satisfaction and firm performance: insights from over a quarter century of empirical research. Journal of the Academy of Marketing Science, 48(3), 543–564. https://doi.org/10.1007/s11747-019-00657-7
  50. Park, C.-K., Kim, H.-J., & Kim, Y.-S. (2014). A study of factors enhancing smart grid consumer engagement. Energy Policy, 72, 211–218.
  51. Peters, D., Axsen, J., & Mallett, A. (2018). The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renewable and Sustainable Energy Reviews, 82, 1939–1951. https://doi.org/10.1016/j.rser.2017.06.020
  52. REN21. (2020). Renewables 2020 Global Status Report. REN21 Secretariat. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf
  53. Santini, F. de O., Ladeira, W. J., Pinto, D. C., Herter, M. M., Sampaio, C. H., & Babin, B. J. (2020). Customer engagement in social media: a framework and meta-analysis. Journal of the Academy of Marketing Science, 48, 1211–1228. https://doi.org/10.1007/s11747-020-00731-5
  54. Schaffers, H., Ratti, C., & Komninos, N. (2012). Special issue on smart applications for smart cities - New Approaches to Innovation: Guest Editors’ Introduction. Journal of Theoretical and Applied Electronic Commerce Research, 7(3). https://doi.org/10.4067/S0718-18762012000300005
  55. Schmidt, F. L. (2015). History and development of the Schmidt-Hunter meta-analysis methods. Research Synthesis Methods, 6(3), 232–239. https://doi.org/10.1002/jrsm.1134
  56. Van de Kaa, G., Fens, T., Rezaei, J., Kaynak, D., Hatun, Z., & Tsilimeni-Archangelidi, A. (2019). Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method. Renewable and Sustainable Energy Reviews, 103(January 2017), 320–327. https://doi.org/10.1016/j.rser.2018.12.035
  57. Venkatesh,V., Morris, M.G., Davis, G.B., & Davis. F.D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  58. Venkatesh, V., Thong, J.Y.L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
  59. Wemyss, D., Castri, R., Cellina, F., De Luca, V., Lobsiger-Kägi, E., & Carabias, V. (2018). Examining community-level collaborative vs. competitive approaches to enhance household electricity-saving behavior. Energy Efficiency, 11, 2057–2075. https://doi.org/10.1007/s12053-018-9691-z
  60. Xu, L., Peng, X., Pavur, R., & Prybutok, V. (2020). Quality management theory development via meta-analysis. International Journal of Production Economics, 229, 107759. https://doi.org/10.1016/j.ijpe.2020.107759
  61. Yang, B., Liu, S., Gaterell, M., & Wang, Y. (2019). Smart metering and systems for low-energy households: challenges, issues and benefits. Advances in Building Energy Research, 13(1), 80–100. https://doi.org/10.1080/17512549.2017.1354782