Vol. 21 No. 1 (2023): Fuentes, el reventón energético
Articles

COMPUTER AIDED EVALUATION OF SOLVENT EXTRACTION FOR LIGHT HYDROCARBON USING CARBON DIOXIDE

Viktor Oswaldo Cárdenas Concha
Chemical Engineering Department, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil.
Luz Sheyla Cárdenas Concha
Universidad Nacional de Trujillo, Avenida Juan Pablo II, Trujillo, Perú, 13011.
Leandro Lodi
Institute of Science and Technology, Federal University of Alfenas (UNIFAL), Poços de Caldas 37715‐400.
Juliana Otavia Bahú
4 School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil, 13083‐852.
Diana Paola Figueroa hernandez
Faculty of Engineering, Chemical Engineering Program, EAN University, St. 79 #11-45, El Nogal, Bogotá, Cundinamarca, Colombia, 110221.
Willian Amaro-Marchioli
Chemical Engineering Department, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, Brazil, 09913-030.
Nelson Antonio Moreno Monsalve
Faculty of Engineering, Chemical Engineering Program, EAN University, St. 79 #11-45, El Nogal, Bogotá, Cundinamarca, Colombia, 110221.
Jeffrey Leon-Pulido
Faculty of Engineering, Chemical Engineering Program, EAN University, St. 79 #11-45, El Nogal, Bogotá, Cundinamarca, Colombia, 110221.

Published 2023-04-20

Keywords

  • Computer Aided-Design,
  • extraction,
  • hydrocarbon,
  • carbon dioxide,
  • simulation,
  • process
  • ...More
    Less

How to Cite

Cárdenas Concha, V. O. ., Cárdenas Concha, L. S., Lodi, L. ., Otavia Bahú, J., Figueroa hernandez, D. P., Amaro-Marchioli, W., Moreno Monsalve, N. A., & Leon-Pulido, J. (2023). COMPUTER AIDED EVALUATION OF SOLVENT EXTRACTION FOR LIGHT HYDROCARBON USING CARBON DIOXIDE . Fuentes, El reventón energético, 21(1), 39–48. https://doi.org/10.18273/revfue.v21n1-2023003

Abstract

Different process of separation was used in the chemical industry, in particular, extraction is a process used to increase the quality of resins in oil removing impurities like organics solids and heavy metals. Supercritical carbon dioxide offers high selectivity at the end of the extraction process of light hydrocarbons from heavy oils mixture. A simulation technique in Aspen Plus ®software was used to develop the process and sensitivity analysis of the extraction configuration. The simulation of extraction process includes two output streams: the first one, a top stream (unpaved oil), and the second one a bottom stream (asphalt residue). A steady state methodology was implemented for process simulation. The sensitivity analysis was used to assess the influence of variables such as solvent flow rate, temperature and pressure. It was found a significant increase in the flow rate of unpaved oil when the solvent flow rate is increased. Optimal extraction values were selected depending on temperature and pressure effects over the process. An increase in temperature directly enhances the quality of API gravity. In certain occasions, an increase in pressure affects the light oils extraction because of product drag.

Downloads

Download data is not yet available.

References

  1. Abdulredha, M.M., Hussain, S.A., & Abdullah, L.C. (2020). Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. Arabian Journal of Chemistry, 13 (1), 3403-3428. https://www.sciencedirect.com/science/article/pii/S1878535218302442
  2. Ahn, S., Shin, S., Im, S.I., Lee, K.B., & Nho, N.S. (2016). Solvent recovery in solvent deasphalting process for economical vacuum residue upgrading. Korean Journal of Chemical Engineering, 33(1), 265–270. https://link.springer.com/article/10.1007/s11814-015-0146-3
  3. Budisa N., & Schulze-Makuch, D. (2014). Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment. Life, 4(3), 331–340. https://www.mdpi.com/2075-1729/4/3/331
  4. Cárdenas, V.O.C. (2010). Estudo experimental e modelagem matemática da separação de asfaltenos e óleos lubrificantes provenientes do resíduo de petróleo por desasfaltação supercrítica. Universidade Estadual de Campinas. https://repositorio.unicamp.br/acervo/detalhe/782233
  5. De Souza R. A., De Oliveira A. A., Vieira Y. M., Zaparoli A. T., Wolf Maciel, M. R., Filho R. M., & Cárdenas-Concha, V. O. (2017). Sensibility analysis of propane deasphalting process variables. Petroleum Science and Technology, 35(1), 22–29. https://www.tandfonline.com/doi/abs/10.1080/10916466.2016.1225086?journalCode=lpet20
  6. Eckermann B., & Vogelpohl, A. (1990). Deasphaltization and demetalling of heavy crude oils and distillation residues with CO2. Chemical Engineering & Technology, 13(1), 258–264. https://onlinelibrary.wiley.com/doi/abs/10.1002/ceat.270130135
  7. Espinoza, S.N. (2001). Procesamiento supercrítico de productos naturales. Modelado, análisis y optimización. Universidad Nacional del Sur. http://repositoriodigital.uns.edu.ar/handle/123456789/2181
  8. Freitas A., Santana C., Silva R., & Silva, G. (2007). Investigação das facilidades e métodos utilizados atualmente no processamento primário de petróleo em campos onshore e offshore. 4o PDPETRO, 1–8. http://www.portalabpg.org.br/PDPetro/4/resumos/4PDPETRO_2_3_0322-1.pdf
  9. Grziwa. (1982). The chemistry and technology of petroleum: by James G. Speight Marcel Dekker, New York, Fuel Processing Technology, 5(3–4), 325–326. https://www.sciencedirect.com/science/article/pii/0378382082900261
  10. Holderbaum T., & Gmehling J. (1991). PSRK: Eine Zustandsgleichung zur Vorhersage von Dampf/ Flüssig‐Gleichgewichten bei mittleren und hohen Drücken. Chemie Ingenieur Technik, 63(1), 57–59.
  11. Hosseinifar, P., Shahverdi, H. (2021). A predictive method for constructing the distillation curve of petroleum fluids using their physical bulk properties. Journal of Petroleum Science and Engineering, 200, 108403. https://doi.org/10.1016/j.petrol.2021.108403
  12. Leal-Navarro, J., Mestre-Escudero, R., Puerta-Arana, A., León-Pulido, J., & González-Delgado, Á. D. (2019). Evaluating the Exergetic Performance of the Amine Treatment Unit in a Latin-American Refinery. ACS Omega, 4(26), 21993 –21997. https://pubs.acs.org/doi/10.1021/acsomega.9b03051
  13. Li, J., Fischer, K., & Gmehling, J. (1998). Prediction of vapor–liquid equilibria for asymmetric systems at low and high pressures with the PSRK model. Fluid Phase Equilibria, 143(1–2), 71–82. https://www.sciencedirect.com/science/article/abs/pii/S0378381298002064
  14. Liu, Z.M., Yang, G.Y., Lu, Y., Han, B.X., & Yan, H.K. (1999). Phase equilibria of the CO2–Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO2. The Journal of Supercritical Fluids, 16 (1), 27-31. https://www.sciencedirect.com/science/article/abs/pii/S0896844699000182
  15. Martins S., Azevedo M., Silva M., & Silva, V. (2015). Produção de petróleo e impactos ambientais: algumas considerações. HOLOS, 6, 54-76. https://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/2201/1212
  16. Mathias, P.M., & Copeman, T.W. (1983). Extension of the Peng-Robinson equation of state to complex mixtures: Evaluation of the various forms of the local composition concept. Fluid Phase Equilibria, 13, 91-108. https://www.sciencedirect.com/science/article/abs/pii/0378381283800843
  17. Peng, H., Yang, J., Peng, J., Han, H., Gou, X., Jia, Y., Li, Y., & Kadet, V. (2022). Influence of supercritical CO2 on the physical property of tight sandstone. Petroleum. https://www.sciencedirect.com/science/article/pii/S2405656122000645
  18. Pulido, J.L., Martinez Arias, E.L., Wolf Maciel, M.R., & Maciel Filho, R. (2011). Heat Integrated Reactive Distillation Column (r-HIDiC): Implementing a New Technology Distillation. Chemical Engineering Transactions, 24, 1303- 1308. https://www.cetjournal.it/index.php/cet/article/view/CET1124218
  19. Riazi, M.R. (2005). Characterization and properties of petroleum fractions. ASTM International. https://www.astm.org/mnl50-eb.html
  20. Rincón, F.D. (2009). Representação do petróleo através de componentes reais para a simulação de processos de refino. Universidade de São Paulo. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-18082009-142836/es.php
  21. Rudyk, S., Spirov, P., Al-Hajri, R., & Vakili Nezhaad, G. (2017). Supercritical carbon dioxide extraction of oil sand enhanced by water and alcohols as Co-solvents. Journal of CO2 Utilization, 17, 90–98. https://www.sciencedirect.com/science/article/abs/pii/S2212982016304449
  22. Wilson, R.E., Keith Jr, P.C., & Haylett R.E. (1936). Liquid propane: Use in Dewaxing, Deasphalting, and Refining Heavy Oils. Industrial and Engineering Chemistry, 28(9), 1065–1078. https://pubs.acs.org/doi/10.1021/ie50321a022
  23. Yuan, Q., Zhang, Y., Wang, T., & Wang, J. (2023). Characterization of heavy metals in fly ash stabilized by carbonation with supercritical CO2 coupling mechanical force. Journal of CO2 Utilization, 67, 102308. https://doi.org/10.1016/j.jcou.2022.102308