Vol. 21 No. 2 (2023): Fuentes, el reventón energético
Articles

METHODOLOGY FOR SELECTING CANDIDATE WELLS FOR CHEMICAL CONFORMANCE TREATMENTS

Daniel M. Rojas
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Mauricio Gutierrez
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Danuil E. Dueñas
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Monica A. Martinez
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Samuel Valovis
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Fernando W. Londoño
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Carlos J. Valencia
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Andrey F. Salamanca
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Juan C. Vargas
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Aramis Visbal
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Sady S. Salazar
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Sergio A. Celis
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Diego F. Leon
Ecopetrol, Gerencia General de Desarrollo, 111711, Bogotá, Colombia.
Cindy N. Isaza
Meridian Consulting LTDA, 110221, Bogotá, Colombia.
Leidy L. Alvarez
Meridian Consulting LTDA, 110221, Bogotá, Colombia.
Francisco J. Amado
Meridian Consulting LTDA, 110221, Bogotá, Colombia.
Rubén H. Castro
Meridian Consulting LTDA, 110221, Bogotá, Colombia.

Published 2023-11-27

How to Cite

Rojas, D. M., Gutierrez, M., Dueñas, D. E., Martinez, M. A. ., Valovis, S., Londoño, F. W., Valencia, C. J., Salamanca, A. F., Vargas, J. C., Visbal, A., Salazar, S. S., Celis, S. A., Leon, D. F., Isaza, C. N., Alvarez, L. L., Amado, F. J., & Castro, R. H. (2023). METHODOLOGY FOR SELECTING CANDIDATE WELLS FOR CHEMICAL CONFORMANCE TREATMENTS. Fuentes, El reventón energético, 21(2), 61–83. https://doi.org/10.18273/revfue.v21n2-2023005

Abstract

Channeling is generally a consequence of reservoir heterogeneity, especially due to large permeability variations, causing a reduction in volumetric efficiency as a product of the fluid injected recirculation in secondary and/or enhanced recovery (EOR) processes. For improving the vertical injection profile and reducing the recirculation of water injected, in Colombia, from 2008 to 2020, 33 deep chemical conformance and channeling control treatments have been implemented in nine fields for increasing the volumetric sweep efficiency to increase oil recovery factor. The result of the reported treatments is up to 3 barrels of incremental oil for each barrel of bulkgel injected. However, the number of conformance treatments is low compared to the number of wells injection in the country of approximately 1400).

Therefore, Ecopetrol adapted a methodology for selecting candidate wells for chemical conformance treatments that include reservoir continuity, determination and characterization of heterogeneity, fluid movement study, determination of connectivity of the injection pattern, vertical and areal distribution of the injected and produced fluids, generation of diagnostic graphics in Sahara software to finally identify the candidate wells and design the conformance treatment

The construction of the diagnostic graphics, base of the methodology, beginning with vertical distribution of secondary production with the Injection Withdrawal Ratio IWR (allocation of productions), in which the well production is distributed to the injector wells that affect, and this production is associated with each injector.

According with the areal distribution, flow elements are generated with dynamic meshes centered on the injector and weighted using the angular distribution. The secondary production distribution includes the ILT/PLT, meshing and distribution coefficients of the injection patterns over time.

In the present work, a description and application of the integrated methodology is presented that allows identifying the production of oil and water per reservoir in each injection pattern, as well as the efficiency of the injected water to visualization actions to improve oil production and decrease of water production, with the objective of identifying the sectors with lower performance and needs to optimization of the secondary and/or tertiary process. The methodology was validated and complemented with information from interwell tracers (IWTT) and numerical simulation with streamline. Therefore, conformance treatments have been applied since 2021 in 23 new wells with promising results of incremental oil production.

The selection of candidate wells for chemical conformance treatments expands the expectations of widespread use of these technologies in different fields of the country and becomes a fundamental piece to leverage the achievement of reserves and a reduction in the carbon footprint mainly due to the fact that with the same The flow of fluid injected increases oil production and in some treatments it can reduce water production, ensuring lower energy consumption (CO2) for each barrel of oil produced.

Downloads

Download data is not yet available.

References

  1. Aldhaheri, M., Wei, M., Bai, B., Alsaba, M. (2016). A Roadmap to Successfully Select a Proper Gel Treatment Technology. Paper presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia https://doi.org/10.2118/182795-MS
  2. Azari, M., & Soliman, M. (1996). Review of Reservoir Engineering Aspects of Conformance Control Technology. Paper presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas. https://doi.org/10.2118/35171-MS
  3. Báez-Serrano, B. J., Montealegre-Peña, D. A., Castro-García, R. H., Ardila-Moreno, M., & Suárez-Barbosa, A. F. (2020). Alternativas para el monitoreo en línea de soluciones poliméricas en procesos EOR. Fuentes, El reventón energético, 18(2), 45–56. https://doi.org/10.18273/revfue.v18n2-2020003
  4. Baker, R. (1997). Reservoir Management for Waterfloods. J Can Pet Techno, 36 (04). https://doi.org/10.2118/97-04-DAS
  5. Baker, R. (1998). Reservoir Management for Waterfloods-Part II. J Can Pet Technol, 37 (01) https://doi.org/10.2118/98-01-DA
  6. Carlson, F. M., & Stein, M. H. (1992). Automatic Waterflood History Matching Using Dimensionless Performance Curves. Paper presented at the SPE Annual Technical Conference and Exhibition, Washington. https://doi.org/10.2118/24897-MS
  7. Castro, R., & Daza, J. (2022). Tecnologías de inyección de polímero HPAM: Review Colombia. http://oilproduction.net/reservorios/eor/item/3700-eorcolombia
  8. Castro, R., Espinosa, C., Gutiérrez, M., Rojas, D., García, J., Quintero, H., Corredor, L., Amado, J., Guerrero, C., Poveda, I., & Kazempour. M. (2023). Diseño de tratamientos de conformance profundo mediante simulación numérica de Polímeros de Activación Térmica (TAP). Artículo presentado en XX Congreso Colombiano de Petróleo, Gas y Energía organizado por ACIPET en Cartagena, Colombia. TEC-270.
  9. Craig, F. C. (1971). The reservoir engineering aspects of waterflooding. Monograph Series, Society of Petroleum Engineers of AIME.
  10. Daza, J., & Castro. R. (2022). Evaluación técnico-financiera de los pilotos IOR/EOR ejecutados en Colombia con tecnología de inyección de polímero HPAM. Artículo presentado en XIX Congreso Colombiano de Petróleo, Gas y Energía organizado por ACIPET en Cartagena, Colombia. TEC-211.
  11. Diaz Guardia, V. M., Castillo, M., Vecino, C. E., Castro, R. H., Toro, G. M., & Bravo, O. (2011). Análisis de Riesgo y Simulación de Monte Carlo en la Valoración de Proyectos–aplicación en la Industria de los Hidrocarburos. Revista Fuentes: El reventón energético. 9(2), 33-41.
  12. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/2609/2918
  13. Dunn, M. D., & Chukwu, G. A. (2001). Simulation Based Dimensionless Type Curves for Predicting Waterflood Recovery. Paper presented at the SPE Western Regional Meeting. https://doi.org/10.2118/68839-MS
  14. Galacho, M., Galacho, P, Vázquez, P., & Masud, L. (2004). Mallas de recuperación secundaria optimización del diseño por simulación en líneas de flujo. Artículo presentado en iNNotec, Buenos Aíres, Argentina.
  15. Gutierrez, M., Acosta, T., Jiménez, R., Barbosa, C., Corredor, L.M., Quintero, H., Burgos, I., Ortiz, R., Lozano, J., Quintero, J., Ferreira, U., Ortiz, D., González, A., Parra, M., Collazos, S., Castro, R., Muñoz, L., & Quintero, D. (2023). Optimización del proceso de inyección de agua mediante geles obturantes para el incremento del factor de recobro en el campo Casabe. Artículo presentado en XIX Congreso Colombiano de Petróleo, Gas y Energía organizado por ACIPET en Cartagena, Colombia. TEC-107.
  16. Gutiérrez, M., García, J., Castro, R., Zafra, T., Rojas, J., Ortiz, R., Quintero, H., García, H., Niño, L., Amado, J., Quintero, D., & Kiani, M. (2022). In-Depth Water Conformance Control: Design, Implementation and Surveillance of the First Termally Active Polymers Treatment (TAP) in a Colombian Field. Paper presented at the SPE Improved Oil Recovery Conference. https://10.2118/209472-MS
  17. Kazemi, S. (2019). Review of Polymer Gels for Conformance Control in Oil Reservoirs. Major Papers, University of Windsor.
  18. https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=1109&context=major-papers
  19. Lugo, N. (2010). Offshore field experience with Brightwater®. Presentation shown at the Force ART Work Shop Water based EOR Diversion techniques in Stavanger, Norway. https://www.npd.no/globalassets/2-force/2019/documents/archive-2010-2018/water-based/nancy_lugo.pdf
  20. Luliano, A., Gómez, J., Martínez, C., Alonso, L., Kazempour, M., Kiani, M., Alzate, D., Singh, P., & Jerauld, G., (2020). Thermally Activated Particles Injection for Deep Conformance Control to Improve Oil Recovery in an Argentina Mature Waterflooded Reservoir: Cerro Dragon Field. Design, Field Implementation and Results. Paper presented at the SPE Improved Oil Recovery Conference. https://onepetro.org/SPEIOR/proceedings-abstract/20IOR/3-20IOR/D031S040R002/448570
  21. Manrique, E., Garmeh, G., Izadi, M., Salehi, M., Romero, J., Aye, N., Thomas, C., & Shevelev, P. (2012). In-depth Sweep Efficiency Improvement: Screening Criteria and Engineering Approach for Pattern Evaluation and Potential Field Implementation. Paper presented at the SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition. https://doi.org/10.2118/160749-MS
  22. Maya-Toro, G. A., Castro-García, R. H., Pachón-Contreras, Z. & Zapata-Arango, J. F. (2012). Polymer Gels for Controlling Water Thief Zones in Injection Wells. CT&F – Ciencia, Tecnología y Futuro, 5(1), 37-44. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832012000200003
  23. Morales, V. A., & Ramirez, L. K. (2018). Surveillance Using Dimensionless Variables in the Mature Oil Field La Cira Infantas. Paper presented at the SPE Improved Oil Recovery Conference. https://doi.org/10.2118/190314-MS
  24. Norman, C., Turner, B., Romero, J., Centeno, G., Muruaga, E. (2006). A Review of Over 100 Polymer Gel Injection Well Conformance Treatments in Argentina and Venezuela: Design, Field Implementation, and Evaluation. Paper presented at the International Oil Conference and Exhibition in Mexico. https://doi.org/10.2118/101781-MS
  25. Ohms, D., McLeod, J., Graff, C. J., Frampton, H., Morgan, J. C., Cheung, S., & Chang, K. T. (2010). Incremental-Oil Success from Waterflood Sweep Improvement in Alaska. SPE Production & Operations. 25(03). 247-254. https://doi.org/10.2118/121761-PA
  26. Portwood, J. T., & Romero, J. L. (2018). Waterflood Conformance Improvement–Practical Considerations & Lessons Learned. Fuentes: El reventón energético, 16(2), 7-21. https://revistas.uis.edu.co/index.php/revistafuentes/article/view/9156
  27. Poveda, I. D., Guerrero-Martin, C. A., Espinosa, C., & Castro, R. H. (2023). Simulación Numérica Estocástica de Tratamientos de Conformance Profundo Usando Polímero de Activación Térmica. Fuentes, el reventón energético, 21(1), 49-63. https://doi.org/10.18273/revfue.v21n1-2023004
  28. Pritchett, J., Frampton, H., Brinkman, J., Cheung, S., Morgan, J., Chang, K., Williams, D., Goodgame, J. (2003). Field Application of a New In-Depth Waterflood Conformance Improvement Tool. Paper presented at the SPE International Improved Oil Recovery Conference in Asia Pacific. https://doi.org/10.2118/84897-MS
  29. Salehi, M., Thomas, C. P., Kevwitch, R. M., Manrique, E., Garmeh, R., & Izadi, M. (2012). Performance Evaluation of Thermally-Activated Polymers for Conformance Correction Applications. Paper presented at the SPE Improved Oil Recovery Symposium. https://doi.org/10.2118/154022-MS
  30. Simmons, J. F., & Falls, A. H. (2005). The Use of Dimensionless Scaling Methods to Predict Field-Scale Tertiary EOR Project Performance. Paper presented at the SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/96469-MS
  31. Smith, D. (2023). Flood Management: Solving Conformance or Sweep Efficiency Problems: Part 1. Journal of Petroleum Technology, 75(04), 44-48. https://doi.org/10.2118/0423-0044-JPT
  32. Stein, M. H., & Carlson, F. M. (1992). Dimensionless Equations for Waterflood History Matching. SPE.
  33. Sydansk R., Argabright, P. (1987). Conformance Improvement in a Subterranean Hydrocarbon-Bearing Formation Using Polymer Gel. US Patent US4683949A. United States Patent Office.
  34. Sydansk, R. D., & Moore, P. E. (1990). Production Responses in Wyoming's Big Horn Basin Resulting from Application of Acrylamide-Polymer/CrIII-Carboxylate Gels. SPE, Richardson, Texas.
  35. Sydansk, R. (2007). Polymers, Gels, Foams, and Resins – Chapter 13. Petroleum Engineering Handbook. Society of Petroleum Engineers.
  36. Sydansk, R., Romero-Zeron, L. (2011). Reservoir Conformance Improvement. Society of Petroleum Engineers.
  37. Sydansk, R. D., & Southwell, G. P. (2000). More than 12 years' experience with a successful conformance-control polymer-gel technology. SPE production & facilities, 15(04), 270-278. https://doi.org/10.2118/66558-PA
  38. Terrado, Martin, Yudono, Suryo, and Ganesh Thakur. (2007). Waterflooding Surveillance and Monitoring: Putting Principles into Practice. SPE Res Eval & Eng. 10 (05), 552–562. https://doi.org/10.2118/102200-PA
  39. Thakur, G. and Satter, A. (1998). Integrated Waterflooding Asset Management. Oklahoma: PennWell Books.
  40. Thrasher, D., Nottingham, D., Stechauner, B., Ohms, D., Stechauner, G., Singh, P. K., Angarita, M. L. (2016). Waterflood Sweep Improvement at Prudhoe Bay, Alaska. Paper presented at the SPE Improved Oil Recovery Conference. https://doi.org/10.2118/179572-MS