Vol. 21 No. 2 (2023): Fuentes, el reventón energético
Articles

VARIATIONS IN ASSOCIATED GAS CO2 CONCENTRATION: EVALUATION OF THE PERFORMANCE OF A TURBOEXPANDER GAS CONDITIONING UNIT

Leandro Sebastian Vargas Reyes
Universidad Industrial de Santander, Colombia.
Andrea Carolina González Martínez
Universidad Industrial de Santander, Colombia.
Giovanni Morales Medina
Universidad Industrial de Santander, Colombia.

Published 2023-12-26

Keywords

  • Turboexpander,
  • RUT,
  • Gas Transportation Policy,
  • Associated gas,
  • Carbon dioxide,
  • Valle Medio del Magdalena,
  • Aspen Hysys
  • ...More
    Less

How to Cite

Vargas Reyes, L. S., González Martínez, A. C., & Morales Medina, G. (2023). VARIATIONS IN ASSOCIATED GAS CO2 CONCENTRATION: EVALUATION OF THE PERFORMANCE OF A TURBOEXPANDER GAS CONDITIONING UNIT. Fuentes, El reventón energético, 21(2), 103–119. https://doi.org/10.18273/revfue.v21n2-2023007

Abstract

Herein we disclose an evaluation of the performance of a Turboexpander unit for the conditioning of associated gasses with different CO2 contents. The performance evaluation was carried out by the comparison between the results from a simulation in Aspen Hysys v10 and the specifications established in the national gas transportation policy for natural gas (RUT). The Turboexpander unit was designed for the conditioning of an associated gas defined by the scenario of medium production for the Valle Medio del Magdalena, according to the Mining and Energy Planning Unit (UPME) prospects. The conditioning unit considered the sections: stabilization, sweetening, dehydration, and separation by distillation. Similarly, the range for CO2 content variation was defined between 3 - 12 %mol, based on enhanced recovery (EOR) pilots of air injection and CO2 injection. The results of the simulations showed an adequate performance of the Turboexpander unit for the conditioning of associated gasses with up to 6% mol of CO2 contents, fulfilling the quality parameters of the RUT. Likewise, the simulation results showed that the temperature profile in the absorption tower (sweetening section) changed when gasses with CO2 contents greater than 6%mol were treated. This temperature profile change appeared to be responsible for poor CO2 removal performance. The foregoing would suggest adjustments for the sweetening section or a shift of the respective technology in order to fulfill the quality parameters specified in the RUT.

Downloads

Download data is not yet available.

References

  1. Abdel-Aal, H. K., Aggour, M., Fahim, M. A. (2003). Petroleum and Gas Field Processing. Marcel Dekker, Inc. https://portal.tpu.ru/SHARED/b/BELINSKAYA/UchWork/PPAYAmaster/abdelaal_h_k_aggour_m_fahim_m_a_petroleum_and_gas_field_.pdf
  2. Abdulmutalib, A. y Abdulmalik, F. (2022). Investigation of Hydrate Formation in Natural Gas Transmission Pipelines. International Journal of Advances in Engineering and Management (IJAEM), 4(5), 2040–2055. DOI:10.35629/5252-040520402055
  3. Ahmad, R., Hladky, M., Far, A. S., Usman, M. (2011). Fractionation of Natural Gas Liquids to produce LPG. Norwegian University of Science and Technology. https://portal.tpu.ru/SHARED/b/BELINSKAYA/UchWork/PPAYAmaster/abdelaal_h_k_aggour_m_fahim_m_a_petroleum_and_gas_field_.pdf
  4. Alnaimi, F. B. I., Lim, H. C. L., Sahed, A., Al Salim, H. S., Nasif, M. S. (2020). Investigation on the suitability of natural gas hydrate formation prediction simulation packages and its implementation conditions. Pertanika Journal of Science and Technology, 28(1), 83–97. http://www.pertanika.upm.edu.my/resources/files/Pertanika PAPERS/JST Vol. 28 (S1) 2020/06 JST(S)-0545-2020.pdf
  5. Arinelli, L. O., de Medeiros, J. L., de Melo, D. C., Teixeira, A. M., Brigagão, G. V., Passarelli, F. M., Grava, W. M., Araújo, O. Q. F. (2019). Carbon capture and high-capacity supercritical fluid processing with supersonic separator: Natural gas with ultra-high CO2 content. Journal of Natural Gas Science and Engineering, 66(11), 265–283. DOI:10.1016/j.jngse.2019.04.004
  6. Azmi, N., Mukhtar, H., Sabil, K. M. (2011). Purification of Natural Gas with High CO2 Content by Formation of Gas Hydrates: Thermodynamic Verification. Journal of Applied Sciences, 11(21), 3547–3554. DOI:10.3923/jas.2011.3547.3554
  7. Barbosa, M. C., de Medeiros, J. L., Araújo, O. Q. F., & Nunes, G. C. (2012). NGL Recovery from CO2 -EOR Streams. Computer Aided Chemical Engineering 31(6), 590-594. DOI:10.1016/B978-0-444-59507-2.50110-4
  8. Baumeister, C., Korobilis, D., Lee, T. K. (2020). Energy Markets and Global Economic Conditions. National Bureau of Economic Research, 5(3), 248–253. https://www.nber.org/system/files/working_papers/w27001/w27001.pdf
  9. Benitez, L., Gutierrez, J., Ale Ruiz, L., Erdmann, E., Tarifa, E. (2015). Análisis de las simulaciones del proceso de deshidratación del gas natural con Aspen Hysys y Aspen Plus. Revista de La Facultad de Ciencias Químicas, 12, 20–29. http://dspace.ucuenca.edu.ec/bitstream/123456789/23875/1/3_articulo_revista_12.pdf
  10. Bharathi, A., Nashed, O., Lal, B., Foo, K. S. (2021). Experimental and modeling studies on enhancing the thermodynamic hydrate inhibition performance of monoethylene glycol via synergistic green material. Scientific Reports, 11(1), 1–10. DOI:10.1038/s41598-021-82056-z
  11. Biliyok, C., Lawal, A., Wang, M., & Seibert, F. (2012). Dynamic modelling, validation and analysis of post-combustion chemical absorption CO 2 capture plant. International Journal of Greenhouse Gas Control, 9, 428–445. DOI:10.1016/j.ijggc.2012.05.001
  12. Binous, H. y Bellagi, A. (2013). Simulation of the separation of industrially important hydrocarbon mixtures by different distillation techniques using mathematica®. En Advances in Systems Engineering Research, Nova Science Publisher Inc.
  13. Bogoya, S. y Díaz, S. (2014). Comparación del nivel de recuperación de etano de los procesos Turboexpander: GSP, CRR, RSV Y RSVE, por medio del uso de un simulador numérico. Universidad Industrial de Santander. http://tangara.uis.edu.co/biblioweb/tesis/2014/155391.pdf
  14. Brown, A. S., Milton, M. J. T., Vargha, G. M., Mounce, R., Cowper, C. J., Stokes, A. M. V., Benton, A. J., Lander, D. F., Ridge, A., Laughton, A. P. (2009). Measurement of the hydrocarbon dew point of real and synthetic natural gas mixtures by direct and indirect methods. Energy and Fuels, 23(3), 1640–1650. DOI:10.1021/ef8009469
  15. Camacho, F. (2021). Estudio de viabilidad para la aplicación de una unidad Turboexpander en el acondicionamiento de gases y la recuperación de condensados generados en un campo del Magdalena Medio. Universidad Industrial de Santander.
  16. Carroll, J. J. (2003). Natural Gas Hydrates: A Guide for Engineers. Natural Gas Hydrates: A Guide for Engineers. Gulf Professional Publishing. DOI:10.1016/B978-0-7506-7569-7.X5000-0
  17. Chebbi, R., Al-Amoodi, N. S., Abdel Jabbar, N. M., Husseini, G. A., Al Mazroui, K. A. (2010). Optimum ethane recovery in conventional turboexpander process. Chemical Engineering Research and Design, 88(5–6), 779–787. DOI:10.1016/j.cherd.2009.11.003
  18. Davalos, J., Anderson, W. R., Phelps, R. E., Kidnay, A. J. (1976). Liquid-Vapor Equilibria at 250.00K for Systems Containing Methane, Ethane, and Carbon Dioxide. Journal of Chemical and Engineering Data, 21(1), 81–84. DOI:10.1021/je60068a030
  19. Diaz, J., Gamboa, S., Morales, A., Torres, M., Sánchez, M. (2018). Caracterización de la composición de los gases de pozos petroleros, después de una prueba de conectividad con nitrógeno. Caso de estudio: Piloto de inyección de aire en la formación San Fernando (Meta - Colombia). Congreso Internacional de Ciencias Básicas e Ingeniería – CICI, 1–6.
  20. Díaz-Molina, J. M., Morales-Toscano, A. C., Fernández-Rojas, M., Briceño-Gamba, N., Villalba-Rey, D., Sánchez, M. R. (2019). Determinación y análisis estadístico de la composición de los gases producidos en un piloto de recobro mejorado. Revista ION, 32(1), 63–73. DOI:10.18273/revion.v32n1-2019006
  21. DOF. (2016). Comision reguladora de energia. Diario Oficial de La Federación. http://www.dof.gob.mx/nota_detalle.php?codigo=5432507&fecha=08/04/2016
  22. El-Husseiny, A., Farouq, R., Farag, H. A., El-Taweel, Y. (2021). Exergy analysis of a turbo expander: Modeling and simulation. Acta Chimica Slovenica, 68(2), 304–312. DOI:10.17344/acsi.2020.6047
  23. El-Maghraby, M. A., El-Moniem, N. A., Abdelghany, A. (2022). Controlling hydrocarbon dew point and water dew point of natural gas using Aspen HYSYS. Journal of Engineering and Applied Science, 69(1), 1–10. DOI:10.1186/s44147-022-00126-z
  24. Elbashir, N. O., El-Halwagi, M. M., Economou, L. G., Hall, K. R. (2019). Natural Gas Processing from Midstream to Downstream. J. Wiley & L. Sons (eds.).
  25. Elehinafe, F. B., Nwizu, C. I., Odunlami, O. B., Ibukun, F. D. (2022). Natural Gas Flaring in Nigeria, its Effects and Potential Alternatives – A Review. Journal of Ecological Engineering, 23(8), 141–151. DOI:10.12911/22998993/149822
  26. Escobar, F. H. (2006). Aspectos fundamentales de recobro secundario y terciario. Editorial Universidad Surcolombiana. http://oilproduction.net/files/Libro Fundamentos de Ing de Yacimientos - Fredy Escobar.pdf
  27. Feng, B., Du, M., Dennis, T. J., Anthony, K., Perumal, M. J. (2010). Reduction of energy requirement of CO2 desorption by adding acid into CO2-loaded solvent. Energy and Fuels, 24(1), 213–219. DOI:10.1021/ef900564x
  28. Fernandez, L., Bandoni, J. A., Eliceche, A. M., Brignole, E. A. (1991). Optimization of ethane extraction plants from natural gas containing carbon dioxide. Gas Separation and Purification, 5(4), 229–234. DOI:10.1016/0950-4214(91)80029-5
  29. Getu, M., Mahadzir, S., Long, N. V. D., Lee, M. (2013). Techno-economic analysis of potential natural gas liquid (NGL) recovery processes under variations of feed compositions. Chemical Engineering Research and Design, 91(7), 1272–1283. DOI:10.1016/j.cherd.2013.01.015
  30. Giri, M. S., Akbari, M., Shariaty-Niasar, M., Bakhtiari, A. (2011). A Comparative Survey of Modeling Absorption Tower Using Mixed Amines. Journal of Chemical and Petroleum Engineering, University of Tehran, 45(1), 57-70. https://jchpe.ut.ac.ir/article_23482_e88dd81898bb6ff189d3db2e1dad7b05.pdf
  31. Hasan, S., A.Mohamed, A., Mostafa, M., Gamal, M. (2020). Modeling and Simulation of Gas Dehydration Using Cubic Plus Association Equation of State Model. Journal of Advanced Engineering Trends, 39(1), 35–42. DOI:10.21608/jaet.2020.73332
  32. Hasib-ur-Rahman, M., Siaj, M., & Larachi, F. (2010). Ionic liquids for CO2 capture-Development and progress. Chemical Engineering and Processing: Process Intensification, 49(4), 313–322. DOI:10.1016/j.cep.2010.03.008
  33. Irina, R. y Watanasiri, S. (2015). Acid Gas Cleaning using Amine Solvents : Validation with Experimental and Plant Data. White Paper, Aspen Technology Inc, 11-7678-1215.
  34. Jiang, S., Li, Y., Wang, F., Sun, H., Wang, H., Yao, Z. (2022). A state-of-the-art review of CO2 enhanced oil recovery as a promising technology to achieve carbon neutrality in China. Environmental Research, 210(2), 112986. DOI:10.1016/j.envres.2022.112986
  35. Kherbeck, L. y Chebbi, R. (2015). Optimizing ethane recovery in turboexpander processes. Journal of Industrial and Engineering Chemistry, 21, 292–297. DOI:10.1016/j.jiec.2014.02.035
  36. Kim, I., Hoff, K. A., Mejdell, T. (2014). Heat of absorption of CO2 with aqueous solutions of mea: New experimental data. Energy Procedia, 63, 1446–1455. DOI:10.1016/j.egypro.2014.11.154
  37. Koh, C. A., Sloan, E. D., Sum, A. K., Wu, D. T. (2011). Fundamentals and applications of gas hydrates. Annual Review of Chemical and Biomolecular Engineering, 2(7), 237–257. DOI:10.1146/annurev-chembioeng-061010-114152
  38. Kolmetz, K. (2020). Kolmetz Handbook Of Process Equipment Design - Natural Gas Sweetening Systems Selection, Sizing and Troubleshooting. KLM Technology Group. https://www.klmtechgroup.com/PDF/EDG-GAS/ENGINEERING-DESIGN-GUIDELINES-natural-gas-liquids-Rev2.2web.pdf
  39. Kothandaraman, A. (2010). Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study. Massachusetts Institute of Technology https://sequestration.mit.edu/pdf/Anusha_Kothandaraman_thesis_June2010.pdf
  40. Langé, S., & Pellegrini, L. A. (2016). Energy Analysis of the New Dual-Pressure Low-Temperature Distillation Process for Natural Gas Purification Integrated with Natural Gas Liquids Recovery. Industrial and Engineering Chemistry Research, 55(28), 7742–7767. DOI:10.1021/acs.iecr.6b00626
  41. Louli, V., Pappa, G., Boukouvalas, C., Skouras, S., Solbraa, E., Christensen, K. O., Voutsas, E. (2012). Measurement and prediction of dew point curves of natural gas mixtures. Fluid Phase Equilibria, 334, 1–9. DOI:10.1016/j.fluid.2012.07.028
  42. Luyben, W. L. (2013). Control of an extractive distillation system for the separation of CO2 and ethane in enhanced oil recovery processes. Industrial and Engineering Chemistry Research, 52(31), 10780–10787. DOI:10.1021/ie401602c
  43. Maqsood, K., Mullick, A., Ali, A., Kargupta, K., Ganguly, S. (2014). Cryogenic carbon dioxide separation from natural gas: A review based on conventional and novel emerging technologies. Reviews in Chemical Engineering, 30(5), 453–477. DOI:10.1515/revce-2014-0009
  44. Marinov, O. (2015). Separation and Re-Injection of CO2 in Enhanced Oil Recovery Processes. Aalborg University. https://projekter.aau.dk/projekter/files/207552853/Separation_and_Re_Injection_of_CO2_in_Enhanced_Oil_Recovery_Processes_K10og_1_E14.pdf
  45. Martínez, A. (2018). Estudio sobre el impacto de la actividad petrolera en las regiones productoras de Colombia. Caracterización departamental Santander. Cuadernos de Fedesarrollo. https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/3669/CDF_No_66_Septiembre_2018.pdf?sequence=1&isAllowed=y
  46. Mitra, S. (2015). A Technical Report on Gas Sweetening by Amines. DOI:10.13140/RG.2.1.2061.9360
  47. Mokhatab, S., Mak, J. Y., Valappil, J. V, Wood, D. A. (2019). Gas Conditioning and NGL Recovery Technologies. Handbook of Liquefied Natural Gas. Gulf Professional Publishing. DOI:10.1016/C2011-0-07476-8
  48. Mokhatab, S. y Poe, W. (2012). Handbook of Natural Gas Transmission and Processing. Handbook of Natural Gas Transmission and Processing. Gulf Professional Publishing. DOI:10.1016/C2010-0-66115-3
  49. Mokheimer, E. M. A., Hamdy, M., Abubakar, Z., Shakeel, M. R., Habib, M. A., Mahmoud, M. (2019). A comprehensive review of thermal enhanced oil recovery: Techniques evaluation. Journal of Energy Resources Technology, Transactions of the ASME, 141(3), 030801. DOI:10.1115/1.4041096
  50. Mørch, Nasrifar, K., Bolland, O., Solbraa, E., Fredheim, A. O., Gjertsen, L. H. (2006). Measurement and modeling of hydrocarbon dew points for five synthetic natural gas mixtures. Fluid Phase Equilibria, 239(2), 138–145. DOI:10.1016/j.fluid.2005.11.010
  51. Mores, P., Scenna, N., Mussati, S. (2012). CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process. Energy, 45(1), 1042–1058. DOI:10.1016/j.energy.2012.06.038
  52. Osborn, T. J., Jones, P. D., Lister, D. H., Morice, C. P., Simpson, I. R., Winn, J. P., Hogan, E., Harris, I. C. (2021). Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. Journal of Geophysical Research: Atmospheres, 126, e2019JD032352. DOI:10.1029/2019JD032352
  53. Petri, Y., Juliza, H., Humala, N. (2018). Technical and economic analysis use of flare gas into alternative energy as a breakthrough in achieving zero routine flaring. IOP Conference Series: Earth and Environmental Science, 126, 012132. DOI:10.1088/1755-1315/126/1/012132
  54. Poe, W. A. y Mokhatab, S. (2017). Process Modeling and Simulation. Modeling, Control, and Optimization of Natural Gas Processing Plants. Gulf Professional Publishing. DOI:10.1016/C2014-0-03765-3
  55. Rashid, H., Hasan, N., Mohamad Nor, M. I. (2014). Temperature peak analysis and its effect on absorption column for CO2 capture process at different operating conditions. Chemical Product and Process Modeling, 9(2), 105–115. DOI:10.1515/cppm-2013-0044
  56. Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz da Costa, J. C., May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94–95, 123–154. DOI:10.1016/j.petrol.2012.06.016
  57. Sáchica, J. (2012). Estudio de prefactibilidad para la recolección de gas de anulares de los pozos de los activos Lisama, Provincia y Llanito de ECOPETROL S.A. Universidad Industrial de Santander. http://tangara.uis.edu.co/biblioweb/tesis/2012/145251.pdf
  58. Swaidan, B. T. (2016). Optimization of Natural Gas Liquid (NGL) recovery processes. American University of Sharjah. https://dspace.aus.edu/xmlui/bitstream/handle/11073/8382/35.232-2016.30%20Balsam%20Tawfiq%20Swaidan.pdf?sequence=1&isAllowed=y
  59. Tristancho, E. (2017). Evaluación de alternativas para el diseño y simulación de plantas de procesamiento de gas natural con variación en el contenido de gas ácido (H2S y CO2). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/59909/80076714.2017.pdf?sequence=1&isAllowed=y
  60. UPME. (2013). Determinación de potencialidades de uso de las acciones necesarias para activar el subsector del GLP en Colombia. https://bdigital.upme.gov.co/bitstream/001/1028/1/upme_021_Cosenit_detrminacion de potencialidades GLP.pdf
  61. UPME. (2018). Escenarios De Oferta De Hidrocarburos Convencionales y no convencionales. https://bdigital.upme.gov.co/bitstream/handle/001/1340/v.2.pdf?sequence=2&isAllowed=y
  62. Van-Denderen, M., Ineke, E., Golombok, M. (2009). CO2 removal from contaminated natural gas mixtures by hydrate formation. Industrial and Engineering Chemistry Research, 48(12), 5802–5807. DOI:10.1021/ie8017065
  63. Zambrano, E., Rivera, Y., Garmendia, H. (2019). Simulación del proceso de deshidratación de gas natural de la planta: Bajo Alto El Oro-Ecuado Simulation of the natural gas dehydration using TEG from the plant: Bajo Alto El Oro-Ecuador. Ciencia e Ingeniería, 40(3), 273-297.
  64. ZareNezhad, B. y Eggeman, T. (2006). Application of Peng-Rabinson equation of state for CO2 freezing prediction of hydrocarbon mixtures at cryogenic conditions of gas plants. Cryogenics, 46(12), 840–845. DOI:10.1016/j.cryogenics.2006.07.010