Published 2024-11-30
Keywords
- CCS,
- CO2 storage,
- Geological storage,
- Reservoir,
- Sandstone
- Petrophysics ...More
How to Cite
Copyright (c) 2024 Fuentes, el reventón energético
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The objective of this work is to determine the CO2 storage capacity of the Lower “U” reservoir and identify a sealing formation that does not compromise the integrity of the PRH field in the Oriente Basin.
Information obtained from drilled wells in the field, such as core analyses, logs, thin sections analyses, and pressure-transient analyses, were utilized to evaluate the petrophysical properties, the reservoir quality, and the reservoir fluids. Also, petrophysical properties were determined by different methods to address the uncertainty in the measurements. All these properties were utilized in the static and dynamic model to understand the behavior of the Lower “U” reservoir under CO2 injection as a mechanism to increase the recovery factor (i.e., enhanced oil recovery (EOR) through CO2 injection). The continuity and adequate CO2 storage capacity of the Lower “U” reservoir were demonstrated. The presence of a sealing formation of ultra-low permeability/porosity (shale, limestone) above the Lower “U” reservoir provides a safe geological storage system for greenhouse gases (GHG). The central area of PRH field has the best characteristics for CO2 injection due to low reservoir pressures. Additionally, the azimuth providing greater stability for the CO2 injection process was determined, preventing the generation of micro-fractures in the Lower “U” and the communication of the sandstone with other formations.
The study incorporated existing information from the oil exploration of the PRH field, and various methodologies were applied to determine petrophysical parameters. Characterizing the Lower “U” provided crucial details about the reservoir, fluids, and lithology. The theoretical storage volume for the Lower “U” reservoir was 9.13 million tons of CO2. This work is one the very first to assess the carbon capture and storage (CCS) in the Oriente Basin to reduce the environmental impact of GHG emissions.
Downloads
References
- Ayala, D., & Andrade, M. (2017). Factibilidad analítica de la aplicación de la recuperación mejorada de petróleo, caso de estudio Ecuador. Fuentes, El reventón energético, 15(2), 19–30. https://doi.org/10.18273/revfue.v15n2-2017002
- Ayala, D., Bastidas, A., Loaiza, M., & Ayala, S. (2018). Análisis litológico para incremento de la tasa de perforación en la cuenca oriente Ecuador. Fuentes, El reventón energético, 17(1), 83–94. https://doi.org/10.18273/revfue.v17n1-2019008
- Bachu, S. (2000). Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. Energy Conversion Management, 41(9), 953-970. https://doi.org/10.1016/S0196-8904(99)00149-1
- Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N., & Mathaissen, O. (2007). CO2 Storage Capacity Estimation: Methodology and Gaps. International Journal of Greenhouse Gas Control, 1(4), 430-443. https://doi.org/10.1016/S1750-5836(07)00086-2
- Bady, P., Rivadeneira, M., & Barragan, R. (2014). La Cuenca Oriente: Geología y Petróleo. (3a ed.). IFEA, IRD, PETROAMAZONAS EP.
- Baines, S., & Worden, R. (2004). The longterm fate of CO2 in the subsurface: natural analogues for CO2 storage. Geological Society London Special Publications, 233, 29-85. https://doi.org/10.1144/gsl.sp.2004.233.01.06
- Castillo, O., & Ortega, A. (2016). Propiedades Petrofísicas y Aplicación en un Pozo Petrolero al Noreste de la República Mexicana. [Bachelor's thesis]. Universidad Nacional Autónoma de México.
- Catzíz, A., & Tobón, J. (2016). Caracterización inicial de yacimientos petroleros con base en la información del primer pozo perforado (Descubridor) [Bachelor's thesis]. Universidad Nacional Autónoma de México.
- Chadwick, A., Arts, R., Bernstone, C., Franz, M., Thibeau, S., & Zweigel, P. (2007). Best Practice for the Storage of CO2 in Saline Aquifers - Observations and Guidelines from the SACS and CO2 Store Projects. Nottingham: British Geological Survey.
- Chong, S., & Santamarina, J. C. (2016). Soil Compressibility Models for a Wide Stress Range. Journal of Geotechnical and Geoenvironmental Engineering, 142(6), 06016003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001482
- Christopoulou, M. A., Koutsovitis, P., Kostoglou, N., Paraskevopoulou, C., Sideridis, A., Petrounias, P., Rogkala. A., Stock, S. & Koukouzas, N. (2022). Evaluation of the CO2 Storage Capacity in Sandstone Formations from the Southeast Mesohellenic trough (Greece). Energies, 15(10), 3491. https://doi.org/10.3390/en15103491
- E.P. PETROECUADOR. (2022). Conversión del pozo SCY-31 a Inyector- Recuperación Secundaria. Quito: E.P. PETROECUADOR.
- Endara, I. (2015). Estudio Petrográfico y Diagenético PRH-8 , Arenisca LU. PETROPRODUCCIÓN.
- Espinoza, D. N., & Santamarina, J. C. (2017). CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage. International Journal Of Greenhouse Gas Control, 66, 218-229. https://doi.org/10.1016/j.ijggc.2017.09.019
- Estupiñan, J., Marfil, R., & Permanyer, J. (2006). Diagenesis and Sequence Stratigraphy of the “U” Sandstone From the Napo Formation, Oriente Basin, Ecuador. Geogaceta, 40, 283-288.
- Estupiñan, J., Marfil, R., Scherer, M., & Penmayer, A. (2010). Reservoir Sandstones of the Cretaceous Napo Formation U and T Members in the Oriente Basin, Ecuador: Links Between Diagenesis and Sequence Stratigraphy. Journal of Petroleum Geology, 33(3), 221-245. https://doi.org/10.1111/j.1747-5457.2010.00475.x
- Estupiñan, J., & Pacheco, J. (2019). Mineralogía por Difracción de Rayos X (DRX) de la Muestra de los Pozos PRH 8,22; Zona UI y TI. Quito: CIQ.
- Galarza, C. (2013). Almacenamiento Geológico de CO2: Una Solución para la mitigación del Cambio Climático. Anales de Química de la RSEQs, 109(1), 20–26.
- Guéguen, Y., & Palciauskas, V. (1994). Introduction to the Physics of Rock. New Jersey: Princenton University Press.
- Hurtado, A. (2009). Metodología para la Estimación Regional de la Capacidad de Almacenamiento de CO2 en Formaciones Permeables Profundas y sus Insertidumbres. [Doctoral thesis]. Universidad de León.
- Kaldi, J., Daniel, R., Tenthorey, E., Michael, K., Schacht, U., Nicol, A., Underschultz, J., & Backe, G. (2013). Containment of CO2 in CCS: Role of Caprocks and Faults. Energy Procedia, 37, 5403-5410. https://doi.org/10.1016/j.egypro.2013.06.458
- Loor, K., & Ruiz, R. (2022). Proyecto Piloto para Inyección de Agua de Formación en T Inferior - Pozo Parahuacu - 22D. Quito: E.P. PETROECUADOR-RESERVORIOS.
- Ma, S., & Morrow, N. (1996). Relationships Between Porosity and Permeability for Porous Rocks. Montpelier: International Symposium of the Society of Core Analysis.
- Medina, G., Flores, B., Endara, I., & Toro, J. (2011). Distribución de Tamaños de Poros en la Arenisca T Inferior Pozo PRH-22D. Quito: PETROPRODUCCIÓN.
- Ministerio de Energía y Minas. (2022). Balance Energético Nacional 2021- Ecuador (Vol. 1 St). Quito: IIGE.
- Montenegro, J., Medina, G., & Lascano, M. (2015). Estudio Sedimentologico de la Arenisca U Inferior del Pozo PRH-8, Estudio de 13 ft del Núcleo Corona. Quito: PETROPRODUCCIÓN.
- Nygaard, R., Gutierrez, M., Hoeg, K., & Bjorlykke, K. (2004). Influence of burial history on microstructure and compaction behaviour of Kimmeridge clay. Petroleum Geoscience, 10(3), 259-270. https://doi.org/10.1144/1354-079303-591
- Olson, J., Laubach, S., & Lander, R. (2009). Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis. AAPG Bulletin, 93(11), 1535–1549. https://doi.org/10.1306/08110909100
- Pi, Y., Liu, J., Liu, L., Guo, X., Li, C., & Li, Z. (2021). The Effect of Formation Water Salinity on the Minimum Miscibility Pressure of CO2-Crude Oil for Y Oilfield. Frontiers In Earth Science, 9. https://doi.org/10.3389/feart.2021.711695
- Raeini, A., Bijeljic, B., & Blunt, M. (2015). Modelling Capillary Trapping Using Finite-Volume Simulation of Two-Phase Flow Directly on Micro-CT Images. Advances in Water Resources, 83, 102-110. https://doi.org/10.1016/j.advwatres.2015.05.008
- Ringrose, P. (2020). How to store CO2 Underground: Insights from early-mover CCS Projects. Springer Briefs in Earth Sciences (1St ed.). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-33113-9
- Silva, B. (2011). Evaluación de Tecnologías de Recuperación Mejorada no Térmicas en el Campo Cerro Negro [Bachelor's thesis]. Universidad de Oriente.
- Song, Y., Jun, S., Na, Y., Kim, K., Jang, Y., & Wang, J. (2022). Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456, 140968. https://doi.org/10.1016/j.cej.2022.140968
- Toala, G., & Coello, X. (2008). Estudio al Microscopio Electrónico de Barrido de Muestras de Núcleos de Corona, Pozo PRH-8 FM. Napo Superior. Quito: PETROPRODUCCIÓN.
- Wang, M., Yang, Z., Shui, C., Yu, Z., Wang, Z., & Cheng, Y. (2019). Diagenesis and its influence on reservoir quality and oil-water relative permeability: A case study in the Yanchang Formation Chang 8 tight sandstone oil reservoir, Ordos Basin, China. Open Geosciences, 11(1), 37-47. https://doi.org/10.1515/geo-2019-0004
- Wilkinson, M., Haszeldine, R. S., Fallick, A. E., Odling, N., Stoker, S. J., & Gatliff, R. W. (2009). CO2-Mineral Reaction in a Natural Analogue for CO2 Storage--Implications for Modeling. Journal Of Sedimentary Research, 79(7), 486-494. https://doi.org/10.2110/jsr.2009.052
- YACIMIENTOS-CIGQ. (2005). Análisis Convencionales de Núcleo de Corona-Pozo PRH-8, Arenisca U Inferior. Quito, Ecuador: PETROPRODUCCIÓN.
- Zheng , Q., & Liu, Y. (2015). Diagenesis and Diagenetic Lithofacies of Tight Reservoir of Chang4+5 Member of Yanchang Formation in Zhenbei, Ordos Basin. Acta Sedimentologica Sinica, 33(5), 1000-1012. https://doi.org/10.14027/j.cnki.cjxb.2015.05.016