Vol. 22 No. 1 (2024): Fuentes, el reventón energético
Articles

PERFORMANCE ANALYSIS OF WIND TURBINES WITH DIFFUSER AND SWEPT BLADES

Jean Carlos de Almeida Nobre
Universidade Federal do Pará
David Lohan Pereira de Sousa
Universidade Federal do Pará
Jerson Rogério Pinheiro Vaz
Universidade Federal do Pará
Silvio Bispo Vale
Universidade Federal do Pará

Published 2024-11-30

Keywords

  • Wind turbines,
  • Diffuser,
  • Swept blades,
  • Rotor optimization,
  • BEMT

How to Cite

Nobre, J. C. de A., de Sousa, D. L. P., Vaz, J. R. P., & Vale, S. B. (2024). PERFORMANCE ANALYSIS OF WIND TURBINES WITH DIFFUSER AND SWEPT BLADES. Fuentes, El reventón energético, 22(1), 99–106. https://doi.org/10.18273/revfue.v22n1-2024007

Abstract

This work presents a new performance analysis of diffuser-augmented wind turbine (DAWT) and curved blades (sweep effect), considering the influence of diffuser efficiency and thrust, in which a formulation for wake flow speed proposed by Vaz & Wood (2018). Blade element theory has been extended to include diffuser efficiency in the axial velocity formulation by Vaz & Wood (2018), which in turn modifies thrust and power. A correction for the thrust on the rotor proposed by Vaz & Wood (2016) is also added, in which a quadratic equation is used to incorporate the losses in the diffuser. An algorithm was developed and implemented to evaluate the performance of wind turbines with diffuser and sweep effect based on the Blade Element Momentum Theory (BEMT). The impact of the diffuser is evaluated by the augmentation factor, the ratio between the turbine efficiency and the Betz-Joukowsky limit. The comparison between the experiment and the algorithm takes into account the same rotor and diffuser used by Hoopen (2009), optimizing only the blade where it is inserted the sweep effect. The model was validated in comparison with experimental data from Hoopen (2009) and shows good agreement with the power, torque and thrust results for a speed of 10.0 m/s, the increase factor demonstrates good agreement for speeds of 7.0 m/s; 9.0; 10.0 and 11.0 m/s. The results obtained experimentally by Hoopen (2009) are: power of 531.0 W, torque of 7.10 N.m and thrust coefficient of 0.80. The results obtained from the work with a straight blade are: power of 532.6 W, torque of 7.10 N.m and thrust coefficient of 0.77. The optimized rotors with the 30° and 40° sweep effect generated greater performance in the DAWT. The rotor with the 30° sweep effect generated a power of 542.3 W, torque of 6.94 N.m and a thrust coefficient of 0.60. The rotor with the 40° sweep effect generated a power of 520.37 W, torque of 7.23 N.m and a thrust coefficient of 0.69. The present work shows relevant points for the current state of the art, as the theoretical model used presented satisfactory outcomes, demonstrating the feasibility of algorithms for analyzing wind turbine designs with diffuser and sweep effect.

Downloads

Download data is not yet available.

References

  1. Barbosa, D. L., Vaz, J. R., Figueiredo, S. W., Silva, M. D. O. E., Lins, E. F., & Mesquita, A. L. (2015). An investigation of a mathematical model for the internal velocity profile of conical diffusers applied to DAWTs. Anais da Academia Brasileira de Ciências, 87(2), 1133-1148. https://doi.org/10.1590/0001-3765201520140114
  2. CRESESB. (2017). História da Energia Eólica e suas utilizações. Acesso em: 02 de janeiro de 2024. Disponível em: https://www.cresesb.cepel.br/index.php?section=com_content&lang=pt&catid=3
  3. de Souza Alves, A. C. ., Silva Modesto, C. T., Lima e Silva, W. K., P.C, T., Salinas-Silva, R., Camacho-Galindo, S., Costa Gomes, V. J., Guerrero-Martin, L. E., de Freitas, P. P., Restrepo-Linarez, D. F., Corrêa Neto, S. S., & Guerrero, W. A. (2023). Estudio de la implantación de la energía eólica como fuente de suministro energético para una bomba de elevación artificial offshore. Fuentes, El reventón energético, 21(1), 95–104. https://doi.org/10.18273/revfue.v21n1-2023007
  4. Dias, M. M. G., Camacho, R. R. G. (2022). Optimization of NREL phase VI wind turbine by introducing blade sweep, using CFD integrated with genetic algorithms. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, 1-19. https://doi.org/10.1007/s40430-021-03357-y
  5. Energia inteligente. (2024). Cata-ventos pelo mundo. Disponível em: https://energiainteligenteufjf.com.br/category/energia-2/. Acesso em: 02 de fevereiro de 2024.
  6. Gemaque, M. L. A., Vaz, J. R. P., & Saavedra, O. R. (2022). Optimization of Hydrokinetic Swept Blades. Sustainability, 14(21), 13968. https://doi.org/10.3390/su142113968
  7. Glauert, H. (1926). The Elements of Aerofoil and Airscrew Theory. Cambridge Univ. Press.
  8. Glauert, H. (1935). Aerodynamic theory, in: W.F. Durand (Ed.), Chapter XI. Division L. New York - EUA. Springer. Airplanes Propellers.
  9. Hoopen, P. D. C. (2009). An Experimental and Computational Investigation of a Diffuser Augmented Wind Turbine: with an Application of Vortex Generators on the Diffuser Trailing Edge [Master´s. Thesis]. Delft University of Technology.
  10. Huang, X., Yang, J., Gao, Z., Sha, C., Yang, H. (2022). Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades. Machines, 10(10), 876. https://doi.org/10.3390/machines10100876
  11. Khalafallah, M. G, Ahmed, A. M., Emam, M. K. (2019). The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. Advances in Mechanical Engineering, 11(9). https://doi.org/10.1177/1687814019878312
  12. Kim, P. C., & Murcia, J. P. (2017). Design of a wind turbine swept blade through extensive load analysis. Renewable energy, 102(A), 21–34. https://doi.org/10.1016/j.renene.2016.10.039
  13. Lock, C. N. H., Batemen, H., & Townsend, H. C. H. (1926). An Extension of the Vortex Theory of Airscrews with Applications to Airscrews of Small Pitch, Including Experimental Results. Aeronautical Research Committee Reports and Memoranda, Her Majesty’s Stationery Office, London.
  14. Lopes, J. J. A., Vaz, J. R. P., Mesquita, A. L. A., Mesquita, A. L. A., & Blanco, C. J. C. (2015). An approach for the dynamic behavior of hydrokinetic turbines. Energy procedia, 75, 271-276. https://doi.org/10.1016/j.egypro.2015.07.334
  15. Martínez-Hernández, J., Parra-Reyes, N., Guerrero-Martin, L. E., Camacho-Galindo, L. S., Salinas Silva, R., Guerrero, W. A., & Guerrero-Martin, C. A. (2022). Análisis DOFA para la evaluación del potencial de energía eólica en Colombia. Fuentes, el reventón energético, 20(1), 45–56. https://doi.org/10.18273/revfue.v20n1-2022005.
  16. Restrepo-Linarez, D. F. (2023). Propuesta de políticas públicas para la promoción e incentivo del crecimiento de la generación de energía eólica en estados unidos. Fuentes, el reventón energético, 21(2), 121–132. https://doi.org/10.18273/revfue.v21n2-2023008.
  17. Vaz, J. R. P., & Wood, D. H. (2016). Aerodynamic optimization of the blades of diffuser augmented wind turbines. Energy Conversion and Management, 123, 35-45. https://doi.org/10.1016/j.enconman.2016.06.015
  18. Vaz, J. R. P., & Wood, D. H. (2018). Effect of the diffuser efficiency on wind turbine performance. Renewable Energy, 126, 969-977. https://doi.org/10.1016/j.renene.2018.04.013
  19. Veloso, M. J. G., dos Santos, C. H. P., Vaz, J. R. P., & Chavez Neto A. M. (2023). Quasi-Steady Analysis of a Small Wind Rotor with Swept. Sustainability, 15(13), 10211. https://doi.org/10.3390/su151310211
  20. Zuo, H., Liu C., Yang H., & Wang F. (2016). Numerical study on the effect of swept blade on the aerodynamic performance of wind turbine at high tip speed ratio. Journal of Physics, IOP publishing, 753(10), 102010.