Published 2024-11-30
Keywords
- Cascade effect,
- Multibladed rotor,
- Wind turbine,
- BEMT
How to Cite
Copyright (c) 2024 Fuentes, el reventón energético
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Despite their widespread use, horizontal-axis wind turbines face significant challenges, particularly with the cascade effect, a phenomenon directly impacting their efficiency. The cascade effect arises due to the proximity of wind turbine blades, resulting in deviation in wind streamlines and altering pressure distribution across blade sections. Understanding the cascade effect is crucial to avoid overestimating turbine angular velocity, and preventing inaccurate assessments of turbine efficiency, however, there is a lack of reliable predictive models in existing literature. The primary objective of this study is to develop a novel model for predicting the cascade effect in horizontal-axis wind turbines with multiple blades, utilizing the Blade Element Momentum Theory (BEMT). The proposed model focuses on streamlining alterations to correct the cascade effect, incorporating four phenomena outlined by Selig et al. (1995): buoyancy, solid blockage, wake blockage, and streamlines curvature. Equations in the study represent specific developments for correcting the angle of attack (αc), resulting in corrected lift (CLc) and drag (CDc) coefficients. This approach enhances the accuracy of aerodynamic parameters in multi-blade turbines, accounting for the influence of the cascade effect. Validation of the proposed BEMT model involved comparing it with experimental data from John, Vaz, & Wood (2020). The experiments utilized straight blades with a curved airfoil, common in multiple-blade turbines. Data from Bruining (1979) were incorporated into the BEMT model to determine power coefficients for multi-blade rotors (N = 3, 6, 12, and 24), validating the code’s effectiveness. Results demonstrated the model’s efficacy in correcting the cascade effect, showcasing its relevance in improving the efficiency of wind turbines within the global context of renewable energy production.
Downloads
References
- Blanco, C. J. C., Gouveia, A. V., & Mesquita, A. L. A. (2017). Análise hidrodinâmica de rotores axiais para aproveitamento da energia cinética dos rios. Brazilian Congress of Engineering and Thermal Sciences. p. 1887-1890.
- Bruining, A. (1979). Aerodynamic Characteristics of a Curved Plate Airfoil Section at Reynolds Numbers 60,000 and 100,000 and angles of attack from -10 to +90 degrees. Delft University of Technology, Report LR-281.
- Burton, T., Sharpe, D., Jenkins, N., & Bossanyi, E. (2001). Wind energy handbook. John Wiley & Sons, Ltd.
- Clausen, P., Whale, J., & Wood, D. (2021). Small Wind and Hydrokinetic Turbines. V169 de Energy Engineering. Institution of Engineering and Technology. https://doi.org/10.1049/PBPO169E
- de Souza Alves, A. C., Silva Modesto, C. T., Lima e Silva, W. K., P. C., T., Salinas-Silva, R., Camacho-Galindo, S., Costa Gomes, V. J., Guerrero-Martin, L. E., de Freitas, P. P., Restrepo-Linarez, D. F., Corrêa Neto, S. S., & Guerrero, W. A. (2023). Estudio de la Implantación de la Energía Eólica como Fuente de Suministro Energético para Una Bomba de Elevación Artificial Offshore. Fuentes, El reventón energético, 21(1), 95–104. https://doi.org/10.18273/revfue.v21n1-2023007
- Hansen, M. O. L. (2015) Aerodynamics of wind turbines. Routledge.
- John, I. H., Vaz, J. R. P., & Wood, D. (2020). Aerodynamic performance and blockage investigation of a cambered multi-bladed windmill. Journal of Physics: Conference Series, 1618, 042003. https://doi.org/10.1088/1742-6596/1618/4/042003.
- Mesquita, A. L. A., & Alves, A. S. G. (2000). An improved approach for performance prediction of HAWT using the strip theory. Wind Engineering, 24(6), 417-430. https://doi.org/10.1260/030952400320769802.
- Pereira, T. M. (2021). Estudo do comportamento hidrodinâmico de medidores de vazão de gás liquefeito de petróleo utilizado a teoria do elemento de pá com efeito de grade (Tese de Doutorado). Universidade Federal do Pará, Brasil.
- Restrepo-Linarez, D. F. (2023). Propuesta de Políticas Públicas para la Promoción e Incentivo del Crecimiento de la Generación de Energía Eólica en Estados Unidos. Fuentes, El reventón energético, 21(2), 121–132. https://doi.org/10.18273/revfue.v21n2-2023008
- Selig, M. S., Guglielmo, J. J., Broeren, A. P., and Giguere, P. (1995). Summary of Low-Speed Airfoil Data, Volume 1. Virginia, SoarTech Publications.
- Martínez-Hernández, J., Parra-Reyes, N., Guerrero-Martin, L. E., Camacho-Galindo, L. S., Salinas Silva, R., Guerrero, W. A., & Guerrero-Martin, C. A. (2022). Análisis DOFA para la evaluación del potencial de energía eólica en Colombia. Fuentes, El reventón energético, 20(1), 45–56. https://doi.org/10.18273/revfue.v20n1-2022005
- Sessarego, M., & Wood, D. (2015). Multi-dimensional optimization of small wind turbine blades. Renewables: Wind, Water, and Solar, 2(1), 1-11. https://doi.org/10.1186/s40807-015-0009-x
- Sheldahl, R., & Klimas, P. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines, Sandia National Laboratories, report SAND80-2114. https://doi.org/10.2172/6548367.
- Spera, D. A. (1994). Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering. ASME Press, New York.
- Spera, D. A. (2009). Wind Turbine Technology: Fundamentals Concepts in Wind Turbine Engineering, ASME Press, 2nd Ed.
- Vaz, J. R. P., Wood, D. H. (2016). Aerodynamic optimization of the blades of diffuser-augmented wind turbines. Energy Conversion and Management, 123, 35-45. https://doi.org/10.1016/j.enconman.2016.06.015
- Wegereef, E. (1984). Scale model of the ITDG 6 m rotor wind tunnel tests for different blade setting angles. Report of Twente University of Technology, Netherlands, windmill group., WM, 76.
- Wood, D. (2011). Small wind turbines em Advances in wind energy conversion technology (pp. 195-211). Springer.