Vol. 11 No. 2 (2013): Fuentes, el reventón energético
Articles

Numerical simulation of oil-water two-phase flow in porous media

Johana Lizeth Pinilla Velandia
Universidad Industrial de Santander
Bio

Published 2013-12-23

Keywords

  • Darcy law,
  • two-phase flow,
  • finite volume,
  • iMPES,
  • porous media,
  • oil recovery,
  • numerical simulation
  • ...More
    Less

How to Cite

Pinilla Velandia, J. L. (2013). Numerical simulation of oil-water two-phase flow in porous media. Fuentes, El reventón energético, 11(2). Retrieved from https://revistas.uis.edu.co/index.php/revistafuentes/article/view/3837

Abstract

 

This work is motivated by the need to better understand the comprehension of two-phase flow water-oil, in the secondary recovery of oil. Two-phase immiscible and incompressible fluids are considered. The generalized Darcy’s is used for modeling fluid flow. for the numerical resolution the separation of the calculation of the pressure and saturation is required. an  iMPES formulation of the original model is performed. The pressure equation is solved implicitly and the saturation equation explicitly. The spatial discretization is made by the finite volume method. Numerical simulations are carried out in a three-dimensional porous medium by taking into account injection and production wells. Numerical results highlight the effects of injection pressure, capillary pressure and diffusion.

Downloads

Download data is not yet available.

References

1. D. E. Tognisso, Écoulements de fluides complexes en milieu poreux : utilisation de micelles géantes pour la Récupération Améliorée du Pétrole. PhD thesis, Bordeaux 1, Nov. 2011.

2. J. L. P. Pinilla, Modélisation et simulation àl’échelle du pore de la récupération assistée des hydrocarbures par injection de polyméres. PhD thesis, Bordeaux 1, Dec. 2012.

3. M. Quintard, H. Bertin, and S. Whitaker, “Two-phase flow in heterogeneous porous media: The method of large-scale averaging applied to laboratory experiments in a stratified system,” Society of Petroleum Engineers, Oct. 1989.

4. T. Sochi, “flow of non-newtonian uids in porous media,” Journal of Polymer Science Part B: Polymer Physics, vol. 48, no. 23, p. 2437- 2767, 2010.

5. G. Chavent and J. Ja_r_e, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows through Porous Media. Elsevier,Jan. 1986.

6. J. Jafré, “Formulation mixte d’écoulement diphasiques incompressibles dans un milieu poreux,” 1980.

7. D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation. Elsevier, Apr. 2000.

8. Z. Chen, G. Huan, and Y. Ma, Computational Methods for Multiphase Flows in Porous Media. SIAM, Apr. 2006.

9. S. Whitaker, “Flow in porous media i: A theoretical derivation of darcy’s law,” Transp Porous Med, vol. 1, pp. 3{25, Mar. 1986.

10. D. Lasseux, M. Quintard, and S. Whitaker, “Determination of permeability tensors for two-phase ow in homogeneous porous media: Theory,” Transp Porous Med, vol. 24, pp. 107-137, aug. 1996.

11. J. Sheldon and B. Zondek, “One-dimensional, incompressible, noncapillary, two-phase fluid flow in a porous medium,” Society of Petroleum Engineers, vol. 216, pp. 290-296, 1959.

12. H. Stone and A. Garder Jr., “Analysis of gascap or dissolved-gas drive reservoirs,” Society of Petroleum Engineers Journal, vol. 1, June 196.

13. C. Chueh, M. Secanell, W. Bangerth, and N. Djilali, “Multi-level adaptive simulation of transient two-phase ow in heterogeneous porous media,” Computers & fluids, vol. 39, pp. 1585-1596, Oct. 2010.

14. J. Kou and Sun, Shuyu, “On iterative IMPES formulation for two-phase ow with capillarity in heterogeneous porous media,” International Journal of Numerical Analysis and Modeling, Series B, vol. 1, pp. 20 - 40, July 2010.

15. Z. Chen, G. Huan, and B. Li, “An improved IMPES method for two-phase ow in porous media,” Transport in Porous Media, vol. 54, pp. 361- 376, Mar. 2004.

16. M. S. Saad, Propriétés de quelques modéles d’écoulements en milieu poreux/par Mazen Samir Saad. PhD thesis, Bordeaux 1, Jan. 1993.

17. F. Marpeau and M. Saad, “3D simulation of radionuclide transport in porous media,” International Journal for Numerical Methods in Fluids, vol. 64, no. 1, p. 44{70, 2010.

18. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. National Bureau of Standards, 1952.19. R. J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge [u.a.: Cambridge Univ. Press, 2003