Published 2015-12-03
Keywords
- Shale gas,
- Hydraulic fracturing,
- Brittleness index,
- Elastic modul,
- Mineralogy
- Sweet spot ...More
How to Cite
Abstract
The purpose of this paper is to analyze the impact of the Brittleness index in hydraulic fracturing on shale gas formations worldwide, and thereby defi ne parameters to identify fraccable feasibly sweet spots in prospects shale plays.
A literature review was made so as to gather the largest amount of petrophysical and mechanical data from shale gas formations from countries all over the world such as United States, China, Holland, Norway, Denmark and Sweden. Once available the data, different methods were used to calculate the brittleness index of each study case considering the effect of the mineralogical composition and elastic moduli (static and dynamic).
The relation between the brittleness index at depth and the total organic carbon allowed to identify possible sweet spots within each prospect formation. Additionally, the analysis of brittleness index and mechanical behavior of those formations permitted to stablish which fracture fl uid should be used in case of a hydraulic fracturing stimulation at the sweet spot.
Downloads
References
2. Administration, U.S Energy Information. Technically Recoverable Shale Oil and Shale Gas Resources. Washington : s.n. USA 2013.
3. Bignonnet, F. Caracterisation experimentale et modelisation micro-mecanique de la permeabilite et la resistance de roches agileuses. Thèse de doctorat, Universitè Paris-Est. France. 2014.
4. Bouw, S., Lutgert, J. Shale plays in the Netherlands. SPE 152644. 2012.
5. Caineng, Z., Dazhong, D., Shejiao, W., Jianzhong, L., Xinjing, L., Yuman, W., Denghua, L., Keming, C. Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development Journal. Vol. 37, pp 641 – 654 2010.
6. Call, T. Geomechanical properties of Marcellus shale core samples within a sequence stratigraphic framework. Master thesis, Pennsylvania State University. USA. 2012.
7. Chen, D. Microstructure study on Barnett shale. Master Thesis, University of Houston. USA. 2012.
8. Chenji, W., Guan, Q., Wei, G., Bicheng, Y., Killough, J., Hongyan, W., Honglin, L. Characterization and analysis on petrophysical parameters of a marine shale Gas Reservoir. SPE 165380. 2013.
9. Cronin, M.B. Core-scale heterogeneity and dualpermeability pore structure in the Barnett Shale. Master thesis, University of Texas at Austin. USA. 2014.
10. Dooley, J. Macroscopic physics online text. Millersville University. 2010. http://www. millersville.edu/~jdooley/macro/derive/elas1/ poissn/poissn.htm
11. Feng, Y., Kai, W., Blanton, E., Winston, Z. Case study: a challenging large-scale fracturing in Sichuan basin. IPTC 18104. 2014.
12. Feng, Y., Zhengfu, N., Qing, W., Huiqing, L., Shidong, Z., Hongmei, L. Integrated study of reservoir characteristics of a shale gas reservoir: a case study from Sichuan basin of China. SPE 165870. 2013.
13. Glorioso, J., Rattia, A. Unconventional reservoirs: basic petrophysical concepts for shale gas. SPE 153004. 2012.
14. Gray, D., Anderson, P., Logel, J., Delbecq, F., Schmid, R. Estimation of stress and Geomechanical properties using 3D seismic data. EAGE, first break. Vol. 30. March 2012.
15. Howard, D., Angus, J. Acoustics and Psychoacoustics, ISBN 0240519957. Third edition. 2006.
16.Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M. unconventional Shale-gas Systems: the Mississippian Barnett shale of North Central Texas, as one model for thermogenic shale-gas assessment. AAPG Bulletin. Vol. 9, pp 475-499.2007
17.Jiang, T. Connection of elastic and transport properties: effective medium study in anisotropic porous media. Doctorate thesis , University of Houston. USA. 2013.
18. Kinley, T.J. Geology and hydrocarbon potential of the Barnett shale (Mississippian) in the northern Delaware basin, west Texas and southeastern New Mexico. Master thesis, Texas Christian University. USA. 2006.
19. Lau, H., Yu, M. Production technology challenges of tight and shale gas production in China. IPTC 17096. 2013.
20. Li, Q., Chen, M., Jin, Y., Zhou, Y., Wang, F., Zhang, R. Rock mechanical properties of shale gas reservoir and shale gas reservoir and their influences on hydraulic fracture. IPTC 16580. 2013.
21. Li, Y., Ghassemi, A. Creep behavior of Barnett, Haynesville, and Marcellus shale. ARMA12-330. 2012.
22. Mullen, J. Petrophysical characterization of the Eagle Ford shale in south Texas. SPE 138145. 2010.
23. Muniz, E., Fontoura, S. Cu triaxial tests on North Sea shale. ARMA/USRMS 05-814. 2005.
24.Noordoven, Q.A.L.V. Characterization of production potential in Jurassic and Carboniferous shale plays of the Netherlands. Master thesis, Delft University of technology, Holland. 2011.
25. Pollard, D.D. and P. Segall, Theoretical displacements and stresses near fractures in rock; with applications to faults, joints, veins, dikes, and solution surfaces. Fracture mechanics of rock, ed. B.K. Atkinson. London, United Kingdom (GBR): Acad. Press, London. England. 1987.
26. Pool, W., Geluk, M., Abels, J., Tiley, G., Idiz, E., Leenaarts, E. Assessment of an unusual European shale gas play: the Cambro-Ordovician Alum shale, southern Sweden. Paper SPE 152339. 2012.
27. Qionghui, L., Chen, M., Jin, Y., Wang, F. Experimental research on failure modes and mechanical behaviors of gas-bearing shale. Chinese Journal of Rock Mechanics and Engineering, Vol 31, pp 3764-3770.2012.
28. Rabe, C. & Cherrez, J. Laboratory characterization of Norwegian North Sea shale. ISRM 2008-052. 2008.
29. Ravestein, T. Fraccability determination of a Posidonia Shale Formation analogue through geomechanical experiments and micro-CT fracture propagation analysis. Master thesis, Delft University of Technology, Holland. 2014.
30. Rexer, T. Nanopore characterisation and gas sorption potential of European gas shales. Doctorate thesis, Newcastle University, England. 2014.
31. Rickman, R., Mullen, M., Petre, E., Grieser, B., Kundert, D. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale. SPE 115258. 2008.
32. Rickman, R., Mullen, M., Petre, E., Grieser, B., Kundert, D. Petrophysics key in stimulating shales. The American Oil & Gas Reporter. March, 2009.
33. Shukla, P., Kumar, V., Curtis, M., Sondergeld, C. H., Rai, C. S. Nanoindentation studies on shales. University of Oklahoma. ARMA 2013-578. USA. 2013.
34. Sone, H, Zoback, M. Mechanical properties of shale-gas reservoir rocks – part 1: static and dynamic elastic properties and anisotropy. Geophysics Journal. Vol. 78, pp D381 – D392. 2013.
35. Sone, H. Mechanical properties of shale gas reservoir rocks and its relation to the in-situ stress variation observed in shale gas reservoirs. Doctorate thesis, Stanford University. USA. 2012.
36. Tan, J. Shale gas potential of the major marine shale formations in the upper Yangtze platform, south China. Doctorate thesis, Technische Universität Berlin. Germany. 2014.
37. Tepper, B., Baechle, G., Keller, J., Walsh, R., Quint, E. Petrophysical evaluation of shale oil & gas opportunities in emerging shale plays; some examples and learnings from the Americas. IPTC 16926. 2013.
38. Yuan, F., Wang, K., Balnton, E., Zeng, W. Case study: A challenging large-Scale fracturing in Sichuan basin. IPTC 18104. 2014.
39. Zonggang, Lv., Wang, L., Stufen, D., Chong, K., Wooley, J., Qiang, W., Peng, J. China’s marine Qiongzhusi shale play: first deep Asia pacific region horizontal multiple stage frac: case history, operation & execution. IPTC 16391. 2013.