Vol. 14 No. 1 (2016): Fuentes, el reventón energético
Articles

Efecto Forchheimer despreciable para un caudal de gas máximo en un yacimiento de gas condensado

Enoc Basilio Meza
Universidad Nacional de Ingeniería
William Navarro Cornejo
Universidad Nacional de Ingeniería

Published 2016-06-24

Keywords

  • EfectoForchheimer,
  • Efecto Coupling,
  • Yacimiento de Gas Condensado

How to Cite

Basilio Meza, E., & Navarro Cornejo, W. (2016). Efecto Forchheimer despreciable para un caudal de gas máximo en un yacimiento de gas condensado. Fuentes, El reventón energético, 14(1), 43–52. https://doi.org/10.18273/revfue.v14n1-2016004

Abstract

En el presente trabajo se calcula el caudal óptimo de gas de un yacimiento de gas condensado retrógrado, con el objetivo de reducir la condensacion retrógrada, maximizando la velocidad de arrastre debido al efecto coupling y minimizando la caída de presión debido al efecto Forchheimer (efecto no-Darcy, efecto inircial). El comportamiento inercial ha sido estudiado ampliamente debido a su importancia en describir la caida de presión adicional (más de la esperada de acuerdo a la ecuación de Darcy) en el flujo de fluidos en medios porosos, en situaciones de gran velocidad. El efecto de acoplamiento, explica el incremento de la permeabilidad relativa de gas condensado al incrementar la velocidad y disminuir la tensión interfacial. La ecuación de Forchheimer se utilizó para calcular la presión de fondo fluyente a diferentes caudales. Debido al segundo término en la ecuación de Forchheimer, la cual es función del cuadrado de la velocidad superficial del fluido, este valor obtenido resulta siendo menor a la presión de fondo fluyente obtenida mediante la ecuación de Darcy. Esto es importante pues se acumula una cantidad mayor de líquidos, lo cual reduce la permeabilidad relativa, y como consecuencia, el caudal de gas disminuye. Para los caudales de gas propuestos, se encuentra el caudal de gas óptimo, la cual es aquella donde la presión de fondo fluyente es aceptable. La novedad del presente trabajo, es la presentación de un punto óptimo, en el cual el caudal de gas es máximo, para el cual el efecto inercial es despreciable en comparación con el efecto coupling.

Downloads

Download data is not yet available.

References

1. Economides, M.J, Dehghani, K., Ogbe, D.O., and Ostermann, R.D. 1987. Hysteresis Effects for Gas Condensate Wells Undergoing Build-up Tests below the Dew Point Pressure. Presented at the 62nd SPE Annual Technical Conference and Exhibition, Dallas, Texas, 27-30 September. SPE-16748. http:// dx.doi.org/10.2118/16748-MS.

2. Bloom, S. M. P., and Hagoort, J. 1998. The Combine effect of Near-Critical Relative Permeability and Non-Darcy Flow on Well Impairment by Condensate Drop-Out. Presented at the SPE Gas Technology Symposium, Canada, 15-18 March. SPE-39976. http://dx.doi.org/10.2118/51367-PA.

3. Yu X., Lei, S., Liangtian, S., and Shilun, L. 1996. A New Method for Predicting the Law of Unsteady Flow Thro1ugh Porous Medium on Gas Condensate Well. Presented at SPE Program Conference, Canada, 28 April - 1 May. SPE-35649. http://dx.doi. org/10.2118/35649-MS.

4. Gondouin, M., Iffly, R. and Husson, J. 1967. An Attempt to Predict the Time Dependence of Well deliverability in Gas-Condensate Fields. SPE Journal (7): 112-124. SPE-1478-PA. http://dx.doi. org/10.2118/1478-PA.

5. Gringarten, A. C., Bozorgzadeh, M., Daungkaew, S. and Hashemi, A. 2006. Well Test Analysis in Lean Gas Condensate Reservoirs: Theory and Practice. Presented at the SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 3-6 October. SPE-100993. http://dx.doi. org/10.2118/100993-MS.

6. Mott R., Cable A., Spearing M. 2000. Measurements and Simulations of Inertial and High Capillary Number Flow Phenomena in Gas-Condensate Relative Permeability. Presented at the SPE Technical Conference and Exhibition, Dallas, Texas, 1-4 October. SPE-62932-MS. http://dx.doi. org/10.2118/62932-MS.

7. Fevang, Ø., Whitson, C. H. 1995. Modelling Gas Condensate Well Deliverability. Presented at the SPE Annual Technical Conference and Exhibition, Texas, 22-25 October. SPE-30714. http://dx.doi. org/10.2118/30714-PA.

8. Ali, J. K., McGauley, P. J., and Wilson, C. J. Experimental Studies and Modelling of Gas Condensate Flow Near the Wellbore.1997. Presented at the Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition, Brazil, 30 August - 3 September. SPE-39053. http:// dx.doi.org/10.2118/39053-MS.

9. Kalaydjian, F. J-M., Bourbiaux, B. J., Lambard, J-M. 1996. Predicting Gas-Condensate Reservoir Performance: How flow parameters are altered when approaching Production Wells. Presented at the 1996 SPE Annual Conference and Exhibition, Colorado, 6-9 October. SPE-36715. http://dx.doi. org/10.2118/36715-MS.

10. Pope, G. A., Fan, L., Harris B. W., Jamaluddin, A., Kamath J., Mott R., Shandrygin A., Whitson, C. H. 2005. Understanding Gas-Condensate Reservoirs. Oilfield Review 4 (17): 16-29.

11. Sheikhi, E., Hashemi, A., Kaffash, A. 2015. Effect of Non-Darcy Flow Coefficient Variation Due to Water Vaporization on Well Productivity of Gas Condensate Reservoirs. Brazilian Journal of Chemical Engineering 32 (1): 237-245. http://dx.doi. org/10.1590/0104-6632.20150321s00001865.

12. Danesh, A., Tehrani, A. D., Henderson, G. D., AlShaidi, S., Ireland, S., & Thomson, G. 1997. Gas Condensate Recovery Studies: Relative Permeability and its Impact on Well Productivity. Presented at UK DTI Improved Oil Recovery Research Dissemination Seminar, London, United Kingdom. 18-19 June.

13. Henderson, G. D., Danesh, a, Tehrani, D. H., & Al-Kharusi, B. 2000. The Relative Significance of Positive Coupling and Inertial Effects on Gas Condensate Relative Permeability at High Velocity. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1-4 October, SPE62933-MS. http://dx.doi.org/10.2118/62933-MS.

14.Jamiolahmady, M., Sohrabi, M., Ireland, S., & Ghahri, P. 2009. A Generalized Correlation for Predicting Gas-condensate Relative Permeability at near Wellbore Conditions. Journal of Petroleum Science and Engineering 66 (3-4): 98–110. http:// doi.org/10.1016/j.petrol.2009.02.001.

15. Afidick, D., Kaczorowski, N. J., Bette, S. 1994. Production Performance if a Retrograde Gas: A Case Study of the Arun Field. Presented at the SPE Asia Pacific Oil and Gas Conference, Melbourne, Australia, 7-10 November, SPE-28749. http:// dx.doi.org/10.2118/28749-MS.

16. Muskat, M. 1946. The Flow of Homogeneous Fluids through Porous Media, first edition. J. W. Edwards.

17. Forchheimer, P. 1901. Wasserbewegung durch boden, Zeit. Berlin.

18. Fancher, G.H. 1933. Some Physical Characteristics of Oil Sands. Bull. 12, Pennsylvania State C., Minerals Industries Experiment Station, University Park.

19. Geertsma, J. 1974. Estimating the Coefficient of Inertial Resistance in Fluid Flow through Porous Media. SPE Journal 14 (05): 445–450. SPE-4706- PA. http://dx.doi.org/10.2118/4706-PA.

20. Katz, D.L., Lee, L.L. 1990. Natural Gas Engineering. New York. McGrawHill

21. Economides, M. J., Hill, A. D., Ehlig-Economides, C. Petroleum Production Systems. New Jersey: Prentice Hall.

22. Guo B., Ghalambor, A. 2005. Natural Gas Engineering Handbook. Houston, TX. Gulf Publishing Company.

23. Mott, S. R., Cable, A., Spearing, S. M. 2000. Measurements and Simulation of Inertial and High Capillary Number Flow Phenomena in GasCondensate Relative Permeability. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1-4 October. SPE-62932. http:// dx.doi.org/10.2118/62932-MS.

24. Navarro, W.Jamiolahmady, M. 2014. Condensate Banking Study – Pagoreni Field Case. Presented at the VIII INGEPET Conference and Exhibition, Lima, Peru, 3-7 November.

25. Corey, A. T., Rathjens, C. H., Effect of Stratification on Relative Permeability. 1956. Trans. AIME 1956, pp. 207, 358.

26.Jamiolahmady, M., Danesh, a, Tehrani, D. H. 2003. Positive Effect of Flow Velocity on Gas – Condensate Relative Permeability : Network Modelling and Comparison with Experimental Results. Transport in Porous Media 52 (2): 159– 183. DOI: 10.1023/A:1023529300395.