Vol. 15 No. 1 (2017): Fuentes, el reventón energético
Articles

Oxidized and physicochemical characterization of sagu starch “Marantha arundinacea” for the elaboration of bioplastic

Jhon E. Hernández B.
Universidad Pedagógica y Tecnológica de Colombia.
Bio
Oscar J. Medina V
Universidad Pedagógica y Tecnológica de Colombia.
Bio
Angie L. Hernández B.
Universidad Politécnica de Valencia.
Bio
Pablo M. Coha V.
Universidad de Boyacá.
Bio

Published 2017-06-01

How to Cite

Hernández B., J. E., Medina V, O. J., Hernández B., A. L., & Coha V., P. M. (2017). Oxidized and physicochemical characterization of sagu starch “Marantha arundinacea” for the elaboration of bioplastic. Fuentes, El reventón energético, 15(1), 19–26. https://doi.org/10.18273/revfue.v15n1-2017002

Abstract

Excessive use of petroleum-based materials such as fuels, lubricants, dyes, solvents, asphalt, textile fibers and plastics has generated over time a serious environmental problem, due to long periods of degradation of these materials. That is why today’s research focuses on plastics because they have little life, these wastes end up being deposited in landfills, oceans, lakes and other water sources causing pollution of this vital resource for life, all this, kills animal species and ecosystem´s destabilization. Science has proposed solutions such as recycling, the use of materials made of paper, and the development of biodegradable materials, one of those is sagu starch which is an alternative of raw material for the production of biodegradable plastics. This research was aiming to develop a bioplastic using oxidized sago starch. In this study, we performed a physicochemical characterization of native starch, oxidized starch, and bioplastic made from starch. The analyzes performed were: percentage of carbonyl and carboxil groups, transparent gels. It was also applied a scanning electron microscopy where an irregular appearance of the starch granules size was observed. In addition, EDS microscopy allowed us to observe the simple chemistry of the granules, where the oxidized starches have a higher percentage of oxygen than native starch. In the analysis of X ray diffraction, it was observed the patterns of diffraction and the semicrystalline character of the starch. The FT-IR spectrum shows the characteristics of native and oxidized starches bands. On the other hand, the solubility tests and transparency show an advantage of bioplastic made with oxidized starch.

Keywords: Starch, Sagu, Oxidized starch, Bioplastics.

Downloads

Download data is not yet available.

References

  1. Andrade M., Tapia D., Menegalli F. (2012). Development and optimization of biodegradable films base don Achira flour. Carbohydrate polymers, 88. pp. 449-458.
  2. Fredon E., Granet R., Zerrouki R., Krausz P., Saulnier L., Thibault J., Rosier J., Petit C. (2002). Hudrofobic films from maize bran hemicelluloses . Carbohidrate Polimers, 49. pp. 1-12.
  3. García Y., López C., Pérez J., Rendón R., Jiménez A., Flores E., Solorza J., Bastida C. (2013). Physicochemical and mechanical properties of extruded laminates from native and oxidized banana starch during storage”. LWTFood Science and Technology. 54. pp. 447-455.
  4. García Y., Zamudio P. Bello L, Romero C., Solorza J. (2011). Oxidación del almidón nativo de plátano para su uso potencial en la fabricación de materiales de empaque biodegradables: caracterización física, química, térmica y morfológica. Revista iberoamericana de polímeros. Volumen 12 (3). pp. 125-135.
  5. Guadalupe A., Medina D., Ramírez L. (2005). Comparación del almidón de maíz con el almidón modificado cuando es oxidado con permanganato de potasio (KMnO4) y dicromato de potasio (K2Cr2O7). Universidad de El Salvador, Facultad de Química y Farmacia. San Salvador, El Salvador.
  6. Guerra A., Zavareze E., Helbig E., Moura F., Galarza C., Ciacco C. (2011). Oxiadation of fermented cassava starch using hydrogen peroxide. Carbohydrate polymers. 86. pp. 185-191.
  7. Guo Q., Wang Y., Fan Y., Liu X., Ren S., Wen Y., Shen B. (2015). Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 system. Carbohydrate Polymers, 117. pp. 247-25.
  8. Gutiérrez T., Tapia M., Pérez E., Famá L. (2015). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydroclloids. 45. pp. 211-217.
  9. Hoover R. (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a Review. Carbohydrate Polymers, 45. pp. 253-267.
  10. Hu G., Chen J., Gao J. (2009) Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers. 76. pp. 291-298.
  11. Liu J., Wang B., Lin L., Zhang J., Liu W., Xie J., Ding Y. (2014). Functional, Physicochemical properties and structure of crosslinked oxidized maize starch. Food Hydroclloids. 36. pp. 42-52.
  12. Luna G., Villada H., Velasco R. (2009). Almidón termoplástico de yuca reforzado con fibra de fique: preliminares. Redalyc. Sistema de información científica. Dyna. Vol. 76 num. 159. pp. 145-151.
  13. Mello S., Colussi R., Pinto V., Bartz J., Radunz M., Villarreal N., Guerra A., Da Rosa E. (2014). Structure, morphology and functionality of acetylated and oxidized barley satrches. Food Chemistry. pp. 1-35.
  14. Rincón A., Rached L., Aragoza L., Padilla F. (2007). Efecto de la acetilación y oxidación sobre algunas propiedades del almidón de semillas de fruto de pan Artocarpus altilis. Archivos Latinoamericanos de Nutrición. Vol. 57. Num.3. pp. 287-294.
  15. Rivas M., Méndez M., Sánchez M., Núñez M., Bello L. (2008). Caracterización morfológica, molecular y fisicoquímica del almidón de plátano oxidado y lintnerizado. Agrociencia 42. pp. 487-497.
  16. Salman H., Blazek J., Lopez A. Gilbert E., Hanley T., Copeland L. (2009). Structure-function relationships in A and B granules from wheat starches of similar amylose content. Carbohydrate Polymers. 75. pp. 420-427.
  17. Sandhu K., Kaur M., Singh, S. Lim T. (2008). A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties. LWT. 41. pp. 1000-1010.
  18. Sangseethong K., Termvejsayanon N., Sriroth K. (2010). Characterization of physicochemical properties of hypochlorite and peroxideoxidized cassava starches. Carbohydrate Polymers. 82. pp. 446-453.
  19. Sun S., Zhang G., Ma C. (2016). Preparation, physicochemical characterization and application ofacetylated lotus rhizome starches. Carbohydrate Polymers, 135. pp. 10-17.
  20. Teodoro A., Mal S., Romero N., Carvalho G. (2015). Cassava starch films containig acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization. Carbohydrate Polymers, 126. pp. 9-16.
  21. Vanier N., Zavareze E., Pinto V., Klein B., Botelho F., Guerra A., Elias M. (2012). Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidized by different concentrations of sodium hypochlorite. Food Chemistry 131. pp. 1255-1262.
  22. Woggum T., Sirivongpaisal P., Wittaya T. (2015). Characteristics and properties of hydroxypropylated rice starch based biodegradable films. Food Hydrocollids 50. pp. 54-64.
  23. Xiao H., Lin Q., Liu G., Wu Y., Tian W., WU W., FU X. (2011). Physicochemical properties of chemically modified starches from different botanical origin. Scientific Research and Essays. vol. 6(21). pp. 4517-4525.
  24. Zamudio P. (2008). Caracterización estructural de biopelículas elaboradas con almidón modificado de plátano con quitosano. Instituto Politécnico Nacional, Centro de desarrollo de productos bióticos. México.
  25. Zhang S., Zhang Y., Wang X., Wang Y. (2009). High carbonyl content oxidized starch prepared by hidrogen peroxide and its thermoplastic application. Starch 61. pp. 646-655.