v. 17 n. 1 (2019): Fuentes, el reventón energético
Artigos

Mejoramiento de un programa informático para la selección de nuevas tecnologías de control de arena de tipo mecánico en campos operados por Ecopetrol S.A.

Gustavo Adolfo Beltrán Ladino
Universidad de América
Juan Sebastián Carvajal Hernández
Universidad de América

Publicado 2018-12-20

Como Citar

Beltrán Ladino, G. A., & Carvajal Hernández J. S. (2018). Mejoramiento de un programa informático para la selección de nuevas tecnologías de control de arena de tipo mecánico en campos operados por Ecopetrol S.A. REVISTA FUENTES, 17(1), 55–69. https://doi.org/10.18273/revfue.v17n1-2019006

Resumo

En los campos petrolíferos de Colombia ocurre que, debido al arenamiento, se presenta corrosión, erosión y taponamiento de equipos y tuberías de superficie y de subsuelo, incrementando así la frecuencia de trabajos de intervención a los pozos productores de hidrocarburos. Dado lo anterior, surgió la necesidad de mejorar el módulo de control de arena, compuesto por dos herramientas del Manual General de Completamiento de Pozos ya existente (MGCP) para recomendar cuatro nuevas tecnologías de control de arena para su uso en yacimientos que presenten areniscas altamente no uniformes y rangos de tamaño de grano fino. Las mejoras introducidas a dicho módulo permitieron que dentro de la primera herramienta (matriz teórica para los campos de estudio) se recomendaran estas cuatro nuevas tecnologías para su uso en 22 de los 24 campos estudiados por autores previos, pertenecientes a cinco cuencas de Colombia. Así mismo, la segunda herramienta también fue actualizada mediante la introducción de las cuatro nuevas tecnologías mecánicas, además de incluirse un segundo parámetro de selección (tamaño de grano promedio) para recomendar el uso de tecnologías mecánicas nuevas o convencionales de control de arena con base en el último parámetro ya mencionado y en el ya existente coeficiente de uniformidad.

Downloads

Não há dados estatísticos.

Referências

1. 3M. (2017). 3M Ceramic Sand Screens, pp. 1-2. Obtenido de: https://multimedia.3m.com/mws/ media/1382044O/ceramic-sand-technical- data-sheet.pdf
Absolute. (2018). MeshRiteTM Brochure. Obtenido de: http://product.absolutect.com/meshrite- brochure.
3. Ayoub, J.A., Kirksey, J.M., Malone, B.P. and Norman W.D. (1992). Hydaulic Fracturing of Soft Formations in the Gulf Coast, SPE Formation Damage Control Symposium, SPE-23777-MS, Lafayette, Louisiana, USA.
4. Bakri, M, et al. (2008). A Case Study in the Successful Design and Implementation of Frac-Pack Treatments in a Challenging Workover Environment in Malaysia. SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE- 116913-MS, Perth, Australia.
5. Ballesteros, R. A. M., & González, F. E. C. (2016). Modelado del efecto de la movilidad del banco de finos de propante sobre las tendencias de producción en pozos hidráulicamente fracturados. Revista Fuentes, 14(2), 41-49.
6. Bellarby, J. (2009). Well Completion Design, Oxford, Reino Unido: Elsevier, pp. 162, 172.
7. Beltrán, G.A. and Carvajal, J.S. (2018). Generación de un programa informático mejorado para la selección de nuevas tecnologías de control de arena de tipo mecánico en Ecopetrol S.A. Bogotá, D.C., Colombia: Fundación Universidad de América, pp. 37, 38, 42, 47, 48, 49, 56.
8. Gaurav, K. et al. (2014). An Innovative Approach of Revival for Damaged Wells in High Erosive Environment using Ceramic Sand Screens. Offshore Technology Conference, OTC 25106- MS, Houston, Texas, USA.
9. González, E.F. and Ramírez, J.D. (2016). Diseño de una metodología de selección preliminar de sistemas de control de arena para los ampos operados por Ecopetrol S.A. en Colombia. Bogotá, D.C., Colombia Fundación Universidad de América, pp. 54, 119.
10. Guardia, V. M. D., Torres, M. C., Arenas, C. E. V., Castro, R. H., Toro, G. M., & Mendoza, O. B. (2011). Análisis de riesgo y simulación de monte carlo en la valoración de proyectos– aplicación en la industria de los hidrocarburos. Revista Fuentes, 9(2).
11. Hainey, B. W. y Troncoso, J. C. (1992). Frac-Pack: An Innovative Stimulation and Sand Control Technique, SPE Formation Damage Control Symposium, SPE-23777-MS, Lafayette, Louisiana, United States of America.
12. Huimin, Ye, et al. (2011). Innovative Well- Completion Strategy for Challenging Heavy- Oil Wells within Mature Fields Requiring Sand Control in Colombia, SPE Heavy Oil Conference and Exhibition, SPE 149966-MS Kuwait City, Kuwait.
13. Jackson, S. R.; Gundemoni, B. and Barth, P. (2016). Sand Control in Corrosive and Erosive Downhole Conditions at High Temperatures, SPE Asia Pacific Oil & Gas Conference and Exhibition, SPE 182278-MS Perth.
14. Jackson, D.R. and Richardson, M.D. (2007). High- Frequency Seafloor Acoustics. NewYork, USA: Springer, pp 78, 79.
15. Mohd Ismail, I. y Geddes, M. W. (2013). Fifteen Years of Expandable Sand Screen Performance and Reliability, SPE Annual Technical Conference and Exhibition, SPE-166425-MS, New Orleans, Louisiana, USA.
16. Monus F.L., Broussard F.W., Ayoub J.A. y Norman W.D. (1992). Fracturing Unconsolidated Sand Formations Offshore Gulf of Mexico, SPE Annual Technical Conference and Exhibition, SPE-24844-MS, Washington, D.C., USA.
17. Müssig, S. et al. (2011). Ceramic Screens, an Innovative Milestone in Sand Control, SPE Annual Technical Conference and Exhibition, SPE 146721, Denver, Colorado, USA.
18. Nadeem, A., Lopez, M., Joly, S. et al. (2014). Ceramic Screens - an Innovative Downhole Sand Control Solution for Old and Challenging Cased Hole Completions, International Petroleum Technology Conference, IPTC 17477, Doha, Qatar.
19. Norman, D. (2004). The Frac-Pack Completion: Why has it Become the Standard Strategy for Sand Control? Obtenido de: https:// www.onepetro.org/general/SPE-101511- DL?sort=&start=0&q=The+Frac-Pack+Completion%3A+Why+has+it+Become+the+Standar d+Strategy+for+Sand+Control%3F++&from_ year=&peer_reviewed=&published_between=& fromSearchResults=true&to_year=&rows=25#
20. Páez, E. G. M., González, F. E. C., & Duarte, C. A. M. (2016). Aplicación de series de tiempo en la realización de pronósticos de producción. Fuentes: El reventón energético, 14(1), 79-88.
21. Pandey, V.J.; Burton, R.C. y Nozaki, M. (2014). Evolution of Frac-Pack Design and Completion Procedures for High Permeability Gas Wells in Subsea Service, Society of Petroleum Engineers, obtenido de: https://doi. org/10.2118/168636-PA.
22. Penberthy JR, W.L. and Shaughnessy, C.M. (1992). Sand Control, USA: SPE series on special topics, pp. 20, 21, 24, 32.
23. Pierfelici, S., Tacconelli, A., Ripa, G. et al. (2008). High Gas Rate Production: Expandable Solutions in the Mediterranean Sea, SPE Annual Technical Conference and Exhibition, SPE-115860-MS, Denver, Colorado, USA.
24. Quintero, Y. A., Triana, R. L., Jaimes, M. G., & Torres, M. L. (2010). Optimización de diseños de fractura hidráulica aplicando estudios geomecánicos. Revista fuentes, 8(2).
25. Risatrio, A. A., et al. (2015). Cased Hole Ceramic Screen Cutting Completion Cost for Marginal Reservoir: Application in Tunu Field, SPE/ ATMI Asia Pacific Oil & Gas Conference and Exhibition, SPE 176225-MS, Nus Dua, Bali, Indonesia.
26. Salehi-Moorkani, R. and Ghasemzadeh, A. (2011). Improvement of the Criteria for Expandable Sand Screen Well Candidate Selection, SPE European Formation Damage Conference, SPE-143377- MS, Noordwijk, The Netherlands.
27.Sanchez, H., Sampedro, T. and Peñaranda, R. (2004). An Efficient Alternative to Control Sand Production in Horizontal Wells in Block-16 of Ecuador, Offshore Technology Conference, OTC 16256 Houston, Texas, USA.
28. Saucier, R.J. (1974). Considerations in Gravel Pack Design, SPE-AIME 47TH Annual Fall Meeting, SPE 4030, San Antonio, Texas, USA.
29. Schlumberger. (2002). Método combinado de estimulación y control de la producción de arena, Oilfield review, pp. 32-53. Obtenido de: https://www.slb.com/~/media/Files/resources/ oilfield_review/spanish02/aut02/p32_53.pdf
30. Schlumberger. (2017). MeshRiteTM. Obtenido de: http://www.slb.com/~/media/Files/sand_ control/product_sheets/MeshRite_screens_ps.pdf
31. Sidek, S., et al. (2017). First Successful
Application of Ceramic Sand Screen in Maturing Oil Field, Offshore East Malaysia, Abu Dhabi International Petroleum Exhibition & Conference, SPE 188537-MS Abu Dhabi, UAE.
32. Soler, F. and Suárez, C.R. (1991). Técnicas y procedimientos utilizados para el control de la producción de arena en pozos horizontales y verticales, Bogotá, D.C., Colombia: Fundación Universidad de América, pp. 35.
33. Tamayo, G. A. V., Consuegra, F. R., & Simancas, M. E. C. (2017). Predicción de flujo multifásico en sistemas de recolección de crudo: descripción de requerimientos. Fuentes: El reventón energético, 15(1), 87-99. 29. TIFFIN, D.L. et al. (1998). New Criteria for Gravel and Screen Selection for Sand Control, SPE Formation Damage Control Conference, SPE 39437, Lafayette, LA, USA.
34. Weekse, A., Steve, G. and Urselmann, R. (2002). Expandable Sand Screen: Three New World Records in the Brigantine Field, IADC/SPE Drilling Conference, SPE-74549-MS Dallas, Texas, USA.
35. Wildhack, S., Lesniak, C., Müssig, S. et al. (2012). Ceramic Sand Screens for Sand Control in Unconsolidated Reservoirs: Application and Sand Retention Capabilities in the Maturing Oil Field, Gaiselberg, Austria, SPE Annual Technical Conference and Exhibition, SPE 160327 San Antonio, Texas, USA.
36. Woiceshyn, G. and Russel, T. A Unique Sand Control Screen that Enhances Productivity, SPE Latin American and Caribbean Petroleum Engineering Conference, SPE 139360, Lima, Peru.
37. Xiang, W. (2003). Application of Bridging theory on Saucier gravel to examine the sand control effect. SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE 80450, Jakarta, Indonesia.