Remoción de turbidez de agua mediante filtración utilizando cáscara de coco (Cocos nucífera) a nivel de laboratorio

Resumen

La turbidez es la medida de la claridad del agua, relacionada con el efecto que produce el material suspendido, al disminuir el paso de la luz a través de ella. En la presente investigación se evaluó el efecto de un medio filtrante con base en la cáscara o endocarpio de coco (Cocos nucifera), como reductor de la turbidez de agua turbia sintética, formulada con arcilla caolín. Se preparó una solución con 5000 mg/l de caolín en agua y luego se diluyó hasta una turbidez de 100 NTU, la cual se pasó a través de un filtro empacado con la cáscara de coco granulada y se le midieron la turbidez, los sólidos suspendidos totales y el pH. Se utilizaron seis cantidades de cáscara de coco y se analizó la influencia de esta variable sobre los valores de las variables medidas (turbidez, SST y pH). Se aplicó un análisis de regresión para cada una de las variables estudiadas y se obtuvieron los modelos matemáticos que definen el comportamiento de cada una de ellas respecto a la cantidad de cáscara de coco, así como análisis de varianza con α = 0,05, usando el paquete estadístico Statgraphics Centurion XVI.I. Los resultados indicaron que la cáscara de coco puede ser utilizada como medio filtrante granular para la remoción de la turbidez y los SST, además los modelos matemáticos obtenidos fueron no lineales, intrínsecamente lineales con R2 > 0,90 para todas las variables, así como estadísticamente significativos al obtenerse p-valor < 0,05 en todos los casos.

Palabras clave: Cocos nucifera, filtración, turbidez, solidos suspendidos, clarificación, regresión

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] United States Environmental Protection Agency. Water: Monitoring & Assessment. Ohio, Estados Unidos. Disponible en https://archive.epa.gov/water/archive/web/html/vms55.html. Acceso el 12 de agosto de 2019.

[2] Marcó L, Azario R, Metzler C, García MDC. La turbidez como indicador básico de calidad de aguas potabilizadas a partir de fuentes superficiales. Propuestas a propósito del estudio del sistema de potabilización y distribución en la ciudad de Concepción del Uruguay (Entre Ríos, Argentina). Higiene y Sanidad Ambiental. 2004;4:72-82.

[3] Instituto de Hidrología, Meteorología y Estudios Ambientales. Turbiedad por nefelometría (método B). Bogotá, Colombia; 2017.

[4] Organización Mundial de la Salud. Guías para la calidad del agua potable. Primer apéndice a la tercera edición. Volumen 1. Recomendaciones. Genève, Suiza; 2006.

[5] Universidad de la Coruña. Filtración en medio granular. Serie: Tratamientos terciarios. La Coruña, España; 2014.

[6] Satterfield, Z. Turbidity Control. The National Environmental Services Center at West Virginia University. Morgantown, USA; 2006.

[7] Sasikala S, Muthuraman, G. Turbidity removal from surface water by natural coagulants and its potential application. Iran. J. Energy Environ. 2017;8(1):61-66.

[8] Trujillo D, Duque LF, Arcila JF, Rincón A, Pacheco S, Herrera OF. Remoción de turbiedad en agua de una fuente natural mediante coagulación/floculación usando almidón de plátano. rev. ion. 2014;27(1):17-34.

[9] Mahvi AH, Sheikhi R, Naddafi K. Total Coliforms and Turbidity Removal of Water in the Continuous Sand Filter. Iran. J. Public Health. 2003;32(3):7-13.

[10] Nkwonta OI, Olufayo OA, Ochieng GM, Adeyemo JA, Otieno FAO. Turbidity removal: Gravel and charcoal as roughing filtration media. S. Afr. J. Sci. 2010;106(12):1-5.

[11] Torres-Lozada P, Amezquita-Marroquín CP, Agudelo-Martínez KD, Ortiz-Benítez N, Martínez-Ducuara DS. Evaluation of turbidity and dissolved organic matter removal through double filtration technology with activated carbon. Dyna. 2018;85(205):234-239.

[12] Onwuka IM, Madubuike CN, Chilakpu, KO. Effectiveness of Coconut Shell Activated Carbon Filter Material Produced Under Various Carbonization and Activation Conditions. IJASRE. 2018;4(6):68-75.

[13] Ratnoji SS, Singh N. A study of coconut shell - activated carbon for filtration and its comparison with sand filtration. Int. j. renew. energy environ. eng. 2014;2(3):201-204.

[14] Pradeep GG, Sukumaran KP, George G, Muhammad F, Mathew N. Removal of Dissolved Solids in Waste Water using Activated Carbon from Coconut Shell. Journal for Research. 2016;2(7):5-7.

[15] De Oliveira LM, Stefanutti R, Filho BC, Tonetti AL. Coconut shells as filling material for anaerobic filters. SpringerPlus. 2013;2:655-661.

[16] American Society for Testing and Materials. Standard Test Methods for Specific Gravity
of Soil Solids by Water Pycnometer (ASTM D854). West Conshohocken, USA; 2014.

[17] American Society for Testing and Materials. Standard Test Method for pH of Soils (ASTM D4972). West Conshohocken, USA; 2013.

[18] Bazán R. Manual de procedimientos de los análisis de suelos y agua con fines de riego. Ministerio de agricultura y riego, Lima, Perú; 2017.

[19] Carrasquero SJ, Montiel S, Farías D, Parra PM, Marín JC, Díaz AR. Efectividad de coagulantes obtenidos de residuos de papa (Sonalum tuberosum) y plátano (Musa paradisiaca) en la clarificación de aguas. Rev. Fac. Cienc. Básicas. 2017;13(2):90-99.

[20] Carrasquero S, Martínez MF, Castro MG, López Y, Díaz A, Colina G. Remoción de turbidez usando semillas de Tamarindus indica como coagulante en la potabilización de aguas. Rev. bases de la Cienc. 2019;4(1):19-44.

[21] Mas M, Martínez D, Carrasquero S, Rincón A, Vargas L. Eficiencia de las semillas de Hymenaea courbaril como coagulante natural en el proceso de clarificación del agua. Redieluz. 2012;2(2):123-128.

[22] American Society for Testing and Materials. Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water (ASTM D5907). West Conshohocken, USA; 2013.

[23] American Society for Testing and Materials. Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method (ASTM D1298). West Conshohocken, USA; 2012.

[24] Ministerio de Salud. Reglamento de la Calidad del Agua para Consumo Humano (DS N° 031-2010-SA). Lima, Perú; 2011.

[25] Environmental Protection Agency. Edition of the Drinking Water Standards and Health Advisories Tables (EPA 822-F-18-001). Washington, USA; 2018.

[26] Asociación Española de Fabricantes de Agronutrientes. Clasificación del pH. Valencia, España. Disponible en https://aefa-agronutrientes.org/glosario-de-terminosutiles-en-agronutricion/clasificacion-del-ph. Acceso el 14 de agosto de 2019.

[27] Bello SA, Agunsoye JO, Adebisi JA, Kolawole FO, Hassan SB. Physical properties of coconut shell nanoparticles. KUSET. 2016;12(1):63-79.

[28] Carbotecnia, Medios Granulares. Zeolita natural. Jalisco, México. Disponible en https://www.carbotecnia.info/PDF/medfiltrantes/Zeolita.pdf. Acceso el 17 de agosto de 2019].

[29] Gunasekaran K, Kumar PS, Lakshmipathy M. Mechanical and bond properties of coconut shell concrete. Constr. Build. Mater. 2011;25(1):92-98.

[30] Bhaskar J, Singh VK. Water Absorption and Compressive Properties of Coconut Shell Particle Reinforced-Epoxy Composite. J. Mater. Environ. Sci. 2013;4(1):113-118.

[31] Marín T, Villarroel W. Evaluación de un filtro a base de harina de tusa de maíz (Zea mays) y carbón) y carbón vegetal para el tratamiento de agua contaminada con petróleo. Geominas. 2016;44(70):91-96.

[32] Romero-Arenas O, López R, Damián MA, Hernández I, Parraguirre JF, Huerta M. Evaluación del residuo de cáscara de nuez (Juglans regia L.) en la producción de plántulas de Pinus patula, en vivero. Agron. Costarric. 2012;36(2):103-110.

[33] Hernández−Rodríguez M, Otero−Calvis A, Falcón−Hernández J, Yperman Y. Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO3. Rev. Cubana Quim. 2017;29(1):26-38.

[34] Amyx JW, Bass JDM, Whiting RL. Petroleum reservoir engineering. New York: McGraw-Hill; 1960.

[35] Dugan B. Data report: porosity and pore size characteristics of sediments from Site C0002 of the Nankai Trough determined by mercury injection. En: Proceedings of the Integrated Ocean Drilling Program, Volume 338.Strasser M, Dugan B, Kanagawa K, Moore GF, Toczko S, Maeda L, Editores. Houston: Yokohama (Integrated Ocean Drilling Program); 2015. p. 1-8.

[36] Mendoza G, Pinilla FA, Martínez F. Evaluación de filtros de arena y de malla para riego por goteo. Ing. Invest. 1989;9:52-62.

[37] Angelone S, Garibay MT, Cauhapé M. Geología y Geotecnia. Permeabilidad de suelos. Rosario, Argentina: Universidad Nacional de Rosario; 2006.

[38] Pérez JA, Espigares M. Estudio Sanitario del Agua. Filtración. España: Universidad de Granada; 1995.

[39] Al-Yaseri I, Morgan S, Retzlaff W. Using Turbidity to Determine Total Suspended Solids in Storm-Water Runoff from Green Roofs. J. Environ. Sci. 2013;139(6):822-828.

[40] Hannouche A, Chebbo G, Ruban G, Tassin B, Lemaire BJ, Joannis C. Relationship between turbidity and total suspended solids concentration within a combined sewer system. Water Sci. Technol. 2011;64(12):2445-2452.

[41] Hopkins W. A New View of Statistics. Disponible en https://complementarytraining.net/free-willhopkins-a-new-view-of-statistics-pdf-printout/. Acceso el 12 de septiembre de 2019.

[42] Marín-Velásquez TD, Heredia-Jiménez VI, Alcarraz-Curi M. Filtro de cascarilla de Ricinus communis y carbón vegetal para tratamiento de agua contaminada con hidrocarburos: diseño de un sistema en serie por etapas. Ing. agua. 2019;23(3):187-198.

[43] Galindo A, Toncel E, Rincón N. Evaluación de un filtro biológico como unidad de posttratamiento de aguas residuales utilizando conchas marinas como material de soporte. rev. ion. 2016;29(2):39-50.

[44] Mahanna H, Fouad M, Radwan K, Elgamal H. Predicting of Effluent Turbidity from Deep Bed Sand Filters Used in Water Treatment. IJSER. 2015;6(9):621-626.

[45] Maung UHT. A study on the performance of limestone roughing filter for the removal of turbidity, suspended solids, biochemical oxygen demand and coliform organisms using wastewater from the inlet of domestic wastewater oxidation pond (tesis de maestría) Malasia: Universiti Sains Malaysia; 2006.

[46] United States Environmental Protection Agency. Drinking Water Treatability Database. Conventional Treatment. Ohio, Estados Unidos. Disponible en https://iaspub.epa.gov/tdb/pages/treatment /treatmentOverview.do?treatmentProcessId=1934681921. Acceso el 22 de agosto de 2019.
Publicado
2021-01-01
Sección
Artículos