Biosíntesis de nanopartículas de plata con Chlorella sp.

Resumen

En este trabajo se muestran los resultados de la biosíntesis de nanopartículas de plata mediante el uso de la microalga Chlorella sp, utilizando medios de crecimiento con diferentes concentraciones de glicerol, entre el 5% - 20%, y diferentes condiciones de luz y temperatura. La síntesis de las nanopartículas se estudió utilizando los sobrenadantes y pellets de los cultivos autótrofos, heterótrofos y mixotróficos de la microalga. La presencia de nanopartículas se verificó por espectroscopía ultravioleta – visible y las muestras que mostraron mayor concentración de nanopartículas fueron caracterizadas por microscopía electrónica de barrido. Las condiciones de crecimiento mixotrófico favorecieron la excreción de exopolímeros que mejoraron la reducción de la plata y por ende la formación de nanopartículas. Las nanopartículas obtenidas presentaron forma predominantemente elipsoidal con dimensiones de 108 nm x 156 nm y 87 nm x 123 nm para las reducciones llevadas a cabo con los sobrenadantes de los cultivos mixotróficos con glicerol al 5% y 10%, respectivamente.

Palabras clave: Química Verde, Nanopartículas de Plata, Biosíntesis, Microalga

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: A review. Mat. Sci. Eng. C. 2019; 97:954- 965.

[2] Shinde NM, Lokhande AC, Lokhande CD. A green synthesis method for large area silver thin film containing nanoparticles. J. Photochem. Photobiol. B: Biology. 2014;136:19-25.

[3] Rani PU, Rajasekharreddy P. Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloid. Surface. A: Physicochem. Eng. Aspect. 2011;389:188-194.

[4] Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mat. Sci. Eng. C. 2016;58:36-43.

[5] Collera-Zúñiga O, Jiménez FG, Gordillo RM. Comparative study of carotenoid composition in three Mexican varieties of Capsicum annuum L. Food Chem. 2005;90:109-114.

[6] Jagadeesh BH, Prabha TN, Srinivasan K. Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuumvar. variata). Plant Sci. 2004;167:1263-1271.

[7] Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19:1357-1361.

[8] Xie J, Lee JY, Wang DI, Ting YP. Silver nanoplates: from biological to biomimetic synthesis. ACS nano. 2007;1:429-439.

[9] Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2002;2:293-298.

[10] Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, et al. Extracellular synthesis of silver nanoparticles by a silvertolerant yeast strain MKY3. Nanotechnol. 2002;14:95.

[11] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI. et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis.
Nano Lett. 2001;1:515-519.

[12] Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M. et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnol. 2003;14:824-828.

[13] Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Coll. Surf. B: Biointerf. 2006;53(1):55-59.

[14] Lengke MF, Fleet ME, Southam G. Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir. 2007;23:8982-8987.

[15] Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 2007;42:919-923.

[16] Discart V, Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ. Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration. Bioresour. Technol. 2013;129:18-25.

[17] Cheirsilp B, Mandik YI, Prasertsan P. Evaluation of optimal conditions for cultivation of marine Chlorella sp. as potential sources of lipids, exopolymeric substances and pigments. Aquacul. Int. 2016;24:313-326.

[18] Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. Highly valuable microalgae: biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 2013;40:781-796.

[19] Nakamura T, Magara H, Herbani Y, Sato S. Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl. Phys. A. 2011;104:1021-1024.

[20] Ramirez D, Jaramillo F. Facile one-pot synthesis of uniform silver nanoparticles and growth mechanism. Dyna. 2016;83:165-170.

[21] Cruz DA, Rodríguez MC, López JM, Herrera VM, Orive AG, Creus AH. Nanopartículas metálicas y plasmones de superficie: una relación profunda. Avances Ciencias Ingeniería. 2012;3:67-78.

[22] Cabanelas ITD, Arbib Z, Chinalia FA, Souza CO, Perales JA, Almeida, PF, et al. From waste to energy: microalgae production in wastewater and glycerol. Appl. Energy. 2013;109:283-290.

[23] Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia C. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol.
Biotechnol. 2013;51:62-69.

[24] Rai MP, Nigam S, Sharma R. Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy. 2013;58:251-257.

[25] Patel AK, Joun JM, Hong ME, Sim SJ. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour. Technol. 2019;282:245-253.

[26] Hemmati S, Retzlaff-Roberts E, Scott C, Harris MT. Artificial Sweeteners and Sugar Ingredients as Reducing Agent for Green Synthesis of Silver Nanoparticles. J. Nanomaterial. 2019;2019:1-16.

[27] Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA. Green synthesis and characterization of gelatin-based and sugarreduced silver nanoparticles. Int. J. Nanomed. 2011;6:569- 574.

[28] Meshram SM, Bonde SR, Gupta IR, Gade AK, Rai MK. Green synthesis of silver nanoparticles using white sugar. IET Nanobiotechnol. 2013;7:28-32.

[29] Filippo E, Serra A, Buccolieri A, Manno D. Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J. Non-Crystalline Sol. 2013;356:344-350.

[30] Saifuddin N, Wong CW, Yasumira AA. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J. Chem. 2009;6:61-70.

[31] Kumar CG, Mamidyala SK. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Coll. Surf. B: Biointerf. 2011;84:462-466.

[32] Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, et al. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44:939-943.

[33] Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J. Gen. Eng. Biotechnol.
2017;15:31-39.
Publicado
2021-07-27
Sección
Artículos