Nanopartículas de plata funcionalizadas in situ con D-limoneno: efecto en la actividad antibacteriana
Publicado 2020-06-30
Palabras clave
- Nanopartículas de Plata,
- Inversión de Fases,
- Resistencia Bacteriana,
- Concentración Mínima Inhibitoria
Cómo citar
Resumen
Este estudio se centró en la formulación y caracterización de nanopartículas de plata (AgNP) funcionalizadas con d-limoneno. Las nanopartículas se funcionalizaron por inversión de fase y la síntesis de las nanopartículas se realizó in situ; se determinó el tamaño de partícula por difracción laser, potencial zeta y estabilidad coloidal óptica utilizando Multiscan 20 por un periodo de 24 horas a 37 °C; se determinó la concentración mínima inhibitorio (CMI) y la concentración mínima bactericida (CMB) del material formulado sobre las bacterias Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE+, Pseudomona aeruginosa resistente a carbapenémicos. Las nanopartículas presentaron estabilidad coloidal a una concentración de d-limoneno del 3,93 %, iones plata al 1,61x0-3 %, coadyuvante no iónico al 24 % y ácido ascórbico al 5,88 %; cómo sistema regulador se utilizó ácido cítrico/citrato (1:1) 0,48M para un pH de 4,5. La formulación se clasificó como un sistema polidisperso (PD = 0,0851), con una potencial zeta de -11,6 mV y tamaño promedio de partícula de 81,5 ± 0,9 nm. Se evidenció una velocidad de migración de partícula de -0,199 ± 0,006 mm h-1, un perfil de transmisión constante y perfil de retrodispersión con variaciones del 10 %, lo que representa una formulación estable. Las nanopartículas presentaron una CMI y una CMB de 28 μg mL-1 (5,6x10-2 % d-limoneno y 4,7x10-5 % AgNP) contra todas las bacterias probadas.
Descargas
Referencias
[2] Ansari M, Khan H, Khan A, Cameotra S, Saquib Q, Musarrat J. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa. J. Basic Microbiol. 2014;54(7):688-99. https://doi.org/10.1002/jobm.201300748
[3] Rai M, Deshmukh S, Ingle A, Gade A. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012;112(5):841-52. https://doi.org/10.1111/j.1365-2672.2012.05253.x
[4] Simões D, Miguel S, Ribeiro M, Coutinho P, Mendonça A, Correia I. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018;127:130-41. https://doi.org/10.1016/j.ejpb.2018.02.022
[5] Pérez ZC, Torres C, Nuñez M. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules. 2018;23(3):544. https://doi.org/10.3390/molecules23030544
[6] World Health Organization. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Switzerland: World Health Organization; 2017.
[7] Sheikholeslami S, Mousavi S, Ahmadi AH, Hosseini DS, Mahdi RS. Antibacterial Activity of Silver Nanoparticles and Their Combination with Zataria multiflora Essential Oil and Methanol Extract. Jundishapur J. Microbiol. 2016;9(10):e36070. https://doi.org/10.5812/jjm.36070
[8] Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta, Part A. 2011;79(3):594-98. https://doi.org/10.1016/j.saa.2011.03.040
[9] Ministerio de Salud. Plan Nacional de Respuesta a la Resistencia a los Antimicrobianos. Plan Estratégico Dirección de Medicamentos y Tecnologías en Salud. Ministerio de Salud. Colombia: Ministerio de Salud; 2018.
[10] Organización Mundial de la Salud. Sistema mundial de vigilancia de la resistencia a los antimicrobianos. Manual para la primera fase de implementación. Suiza: Organización Mundial de la Salud; 2017.
[11] Morejón García M. Betalactamasas de espectro extendido. Rev. Cubana Med. 2013;52(4):272-80.
[12] Suarez C, Kattan J, Guzmán A, Villegas M. Mecanismos de resistencia a carbapenems en P. aeruginosa, Acinetobacter y Enterobacteriaceae y estrategias para su prevención y control. Infectio. 2006;10(3):85-93.
[13] Torrenegra M, Pájaro N, Méndez L. Actividad antibacteriana in vitro de aceites esenciales de diferentes especies del género Citrus. Rev. Colomb. Cienc. Quim.-Farm. 2017;46(2):160-75.https://doi.org/10.15446/rcciquifa.v46n2.67934
[14] Shao P, Zhang H, Niu B, Jiang L. Antibacterial activities of R-(+)-Limonene emulsion stabilized by Ulva fasciata polysaccharide for fruit preservation. Int. J. Biol. Macromol. 2018;111:1273-80. https://doi.org/10.1016/j.ijbiomac.2018.01.126
[15] Mitropoulou G, Fitsiou E, Spyridopoulou K, Tiptiri-Kourpeti A, Bardouki H, Vamvakias M, et al. Citrus medica essential oil exhibits significant antimicrobial and antiproliferative activity. LWT-Food Sci. Technol. 2017;84:344-52. https://doi.org/10.1016/j.lwt.2017.05.036
[16] Pekmezovic M, Aleksic I, Barac A, Arsic-Arsenijevic V, Vasiljevic B, Nikodinovic-Runic J, et al. Prevention of polymicrobial biofilms composed of Pseudomonas aeruginosa and pathogenic fungi by essential oils from selected Citrus species. Pathog. Dis. 2016;74(8):ftw102. https://doi.org/10.1093/femspd/ftw102
[17] Montironi I, Cariddi L, Reinoso E. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev. Argent. Microbiol. 2016;48(3):210-16. https://doi.org/10.1016/j.ram.2016.04.005
[18] Chen G, Lin Y, Lin C, Jen H. Antibacterial Activity of Emulsified Pomelo (Citrus grandis Osbeck) Peel Oil and Water-Soluble Chitosan on Staphylococcus aureus and Escherichia coli. Molecules. 2018;23(4):840. https://doi.org/10.3390/molecules23040840
[19] Lou Z, Chen J, Yu F, Wang H, Kou X, Ma C, et al. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT. 2017;80:371-7. https://doi.org/10.1016/j.lwt.2017.02.037
[20] Al-Aamri M, Al-Abousi N, Al-Jabri S, Alam T, Khan S. Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. J Taibah Univ Med Sci. 2018;13(2):108-12. https://doi.org/10.1016/j.jtumed.2017.12.002
[21] Rudakiya D, Pawar K. Bactericidal potential of silver nanoparticles synthesized using cell-free extract of Comamonas acidovorans: in vitro and in silico approaches. 3 Biotech. 2017;7:92. https://doi.org/10.1007/s13205-017-0728-3
[22] Abdel-Aziz M, Shaheen M, El-Nekeety A, Abdel-Wahhab M. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 2014;18(4):356-63. https://doi.org/10.1016/j.jscs.2013.09.011
[23] McQuillan J, Groenaga IH, Stokes E, Shaw A. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology. 2011;6(8):857-866. https://doi.org/10.3109/17435390.2011.626532
[24] Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8(1):37-45. https://doi.org/10.1016/j.nano.2011.05.007
[25] Vilas V, Philip D, Mathew J. Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater. Sci. Eng. 2016;61:429-36. https://doi.org/10.1016/j.msec.2015.12.083
[26] Ramírez LS, Marin Castaño D. Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal. Scientia et Technica. 2009;2(42):263-8.
[27] Herrera ML. Pruebas de sensibilidad antimicrobiana Metodología de laboratorio. Rev. méd. Hosp. Nac. Niños. 1999;34:33-41.
[28] Jiménez N, Cienfuegos A, González G, Higuita L. Medios de cultivo, pruebas de identificación y pruebas de susceptibilidad. Medellín, Colombia: Universidad de Antioquia; 2015.
[29] Picazo JJ. Procedimientos en Microbiología Clínica. Recomendaciones de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Métodos básicos para el estudio de sensibilidad a los antimicrobianos. España: Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica; 2000.
[30] CLSI M07 - Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11 Edition. Clinical and Laboratory Standards Institute. 2018.
[31] CLSI. M100 Performance standards for antimicrobial susceptibility testing. 28 Edition. United States: Clinical and Laboratory Standards Institute; 2018.
[32] Scandorieiro S, Camargo L, Lancheros C, Yamada-Ogatta, S, Nakamura, C, Oliveira, A, et al. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. https://doi.org/10.3389/fmicb.2016.00760
[33] Raia M, Paralikara P, Jogeea P, Agarkara G, Inglea A, Deritab M, et al. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int J Pharm. 2017;519(1-2):67-78. https://doi.org/10.1016/j.ijpharm.2017.01.013
[34] Taghizadeh M, Solgi M. The application of essential oils and silver nanoparticles for sterilization of Bermuda grass explants in in vitro culture. Int. J. Hortic. Sci. Technol. 2014;1(2):131–40. https://doi.org/10.22059/IJHST.2014.52784
[35] Khalaf H, Sharoba A, El-Tanahi H, Morsy M. Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey deli meat quality. J. Food Dairy Sci. Mansoura Univ. 2013;4(11):557–73. https://doi.org/10.21608/jfds.2013.72104
[36] Bansod S, Bawaskar M, Gade A, Rai M. Development of shampoo, soap and ointment formulated by green synthesized silver nanoparticles functionalized with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnol. 2015;9:165-71. https://doi.org/10.1049/iet-nbt.2014.0042
[37] Cui H, Zhang X, Zhou H, Zhao C, Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015;56(16):2-8. https://doi.org/10.1186/s40529-015-0096-4
[38] Huang D, Xu J, Liu J, Zhang H, Hu Q. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food related bacteria. Microbiology 2014;83:357-65. https://doi.org/10.1134/S0026261714040067
[39] Li C, Yu J. Chemical composition: antimicrobial activity and mechanism of action of essential oil from the leaves of Macleaya cordata (Willd). R. Br. J. Food Saf. 2015;35(2):227-36. https://doi.org/10.1111/jfs.12175
[40] Lakehal S, Meliani A, Benmimoune S, Bensouna S, Benrebiha F, Chaouia, C. Essential oil composition and antimicrobial activity of Artemisia herba– alba Asso grown in Algeria. Med. Chem. (Los Angeles). 2016;6(6):435-9. https://doi.org/10.4172/2161-0444.1000382
[41] Zhang Z, Vriesekoop F, Yuan Q, Liang H, Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsión. Food Chem. 2014;150:307-12. https://doi.org/10.1016/j.foodchem.2013.10.160
[42] Mohamed A, Mohamed S, Aziza E, Mosaad A. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 2014;18:356-63. https://doi.org/10.1016/j.jscs.2013.09.011
[43] Rhim J, Wang L, Hong S. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids. 2013;33(2):327–35. https://doi.org/10.1016/j.foodhyd.2013.04.002.
[44] Katz L, Baltz R. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2-3):155-76. https://doi.org/10.1007/s10295-015-1723-5