Vol. 35 Núm. 1 (2022): Revista ION

Evaluación físico-química de compositos madera-plástico para el diseño de productos

Ana Jessica Morales Rivera Morales Rivera
Universidad Autónoma de Ciudad Juárez
Santos Adriana Martel-Estrada
Universidad Autónoma de Ciudad Juárez
Imelda Olivas Armendáriz
Universidad Autónoma de Ciudad Juárez
Fátima Aguilar Cera
Universidad Autónoma de Ciudad Juárez

Publicado 2022-06-21

Palabras clave

  • Residuos de madera,
  • Álamo,
  • Policaprolactona,
  • Compositos madera-plástico,
  • Microscopía electrónica,
  • Espectroscopía de infrarrojo
  • ...Más

Cómo citar

Morales Rivera, A. J. M. R., Martel-Estrada, S. A., Olivas Armendáriz, I. ., & Aguilar Cera, F. . (2022). Evaluación físico-química de compositos madera-plástico para el diseño de productos. Revista ION, 35(1), 7–16. https://doi.org/10.18273/revion.v35n1-2022001


Los residuos de madera son tratados comúnmente como desecho y existe un problema para su disposición. Actualmente, las fibras son utilizadas para producir papel, material de construcción y bioplásticos; aunque han sido desarrollados previamente materiales compuestos madera-plástico, no hay reportes de uno con matriz de policaprolactona. Durante la investigación se desarrollaron materiales compuestos policaprolactona-harina de madera de álamo que fueron caracterizados por medio de microscopía electrónica de barrido, espectroscopía infrarrojo por transformada de Fourier, biodegradación, prueba de captación de agua, propiedades mecánicas de flexión a tres puntos y barrido de temperatura. Las imágenes de microscopía electrónica de barrido mostraron materiales compuestos con uniformidad en la matriz, la espectroscopía evidenció interacción del grupo carbonilo de la policaprolactona y el enlace de estiramiento O-C-O con los grupos OH de la madera. Los materiales compuestos son resistentes a la degradación hidrolítica aún bajo los efectos de los rayos UV. De acuerdo con los resultados, se obtuvo un material apropiado para su uso en diseño de productos, por lo que finalmente fue generada una propuesta de diseño del mismo.


Los datos de descargas todavía no están disponibles.


  1. Zhou Y, Stanchev P, Katsou E, Awad S, Fan M. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Waste Manage. 2019;99:42-8.
  2. Keskisaari A, Kärki T. The use of waste materials in wood-plastic composites and their impact on the profitability of the product. Resour Conserv Recycl. 2018;134:257-61.
  3. Azwa Z, Yousif B, Manalo A, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013;47:424-42.
  4. Catto AL, Montagna LS, Almeida SH, Silveira RM, Santana RM. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. Int. Biodeterior. Biodegradation. 2016;109:11-22.
  5. Ramesh RS, Sadashivappa K, Sharanaprabhu L. Physical and Mechanical Properties: Hot pressed Phenol Formaldehyde based Wood Plastic Composite. Materials Today: Proceedings. 2018;5(11, Part 3):25331-40.
  6. Hyvärinen M, Ronkanen M, Kärki T. The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite. Compos. Struct. 2019;210:321-6.
  7. Jamekhorshid A, Sadrameli SM, Barzin R, Farid MM. Composite of wood-plastic and microencapsulated phase change material (MEPCM) used for thermal energy storage. Appl. Therm. Eng. 2017;112:82-8.
  8. Chan CM, Vandi L-J, Pratt S, Halley P, Richardson D, Werker A, et al. Mechanical performance and long-term indoor stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) modified by non-reactive additives. Eur. Polym. J. 2018;98:337-46.
  9. Fornasieri M, Alves JW, Muniz EC, Ruvolo-Filho A, Otaguro H, Rubira AF, et al. Synthesis and characterization of polyurethane composites of wood waste and polyols from chemically recycled pet. Composites Part A: Applied Science and Manufacturing. 2011;42(2):189-95.
  10. Kazemi Najafi S. Use of recycled plastics in wood plastic composites - a review. Waste Manag. 2013;33(9):1898-905.
  11. Turku I, Keskisaari A, Kärki T, Puurtinen A, Marttila P. Characterization of wood plastic composites manufactured from recycled plastic blends. Compos. Struct. 2017;161:469-76.
  12. Taufiq MJ, Mansor MR, Mustafa Z. Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend. Compos. Struct. 2018;189:510-5.
  13. Vedrtnam A, Kumar S, Chaturvedi S. Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of woodplastic composites. Composites Part B: Engineering. 2019;176:107282.
  14. Lin X, Zhang Z, Zhang Z, Sun J, Wang Q, Pittman CU. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts. Waste Manage. 2018;79:38-47.
  15. Toghyani A, Matthews S, Varis J. Effect of dwell time and press speed on the forming quality of the press formed wood plastic composite product. Procedia CIRP. 2019;81:524-8.
  16. Animpong MAB, Oduro WO, Koranteng J, Ampomah-Benefo K, Boafo-Mensah G, Akufo-Kumi K, et al. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels. S. Afr. J. Chem. Eng. 2017;24:55-61.
  17. Kaboorani A. Characterizing water sorption and diffusion properties of wood/plastic composites as a function of formulation design. Constr Build Mater. 2017;136:164-72.
  18. Koohestani B, Ganetri I, Yilmaz E. Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Composites Part B: Engineering. 2017;111:103-11.
  19. Palm A, Smith J, Driscoll M, Smith L, Scott Larsen L. Chemical constituent influence on ionizing radiation treatment of a wood–plastic composite. Radiat. Phys. Chem. 2016;124:164-8.
  20. Youssef AM, Hasanin MS, Abd El-Aziz ME, Darwesh OM. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon. 2019;5(3):e01332.
  21. Jiang L, He C, Fu J, Wang L. Serviceability analysis of wood–plastic composites impregnated with paraffin-based Pickering emulsions in simulated sea water–acid rain conditions. Polym. Test. 2018;70:73-80.
  22. Ge S-b, Gu H-P, Ma J-j, Yang H-Q, Jiang S-c, Liu Z, et al. Potential use of different kinds of carbon in production of decayed wood plastic composite. Arab. J. Chem. 2018;11(6):838-43.
  23. Matthews S, Toghyani AE, Ovaska S-S, Hyvärinen M, Tanninen P, Leminen V, et al. Role of moisture on press formed products made of Wood Plastic Composites. Procedia Manuf. 2018;17:1090-6.
  24. Petchwattana N, Sanetuntikul J, Sriromreun P, Narupai B. Wood Plastic Composites Prepared from Biodegradable Poly(butylene succinate) and Burma Padauk Sawdust (Pterocarpus macrocarpus): Water Absorption Kinetics and Sunlight Exposure Investigations. J. Bionic Eng. 2017;14(4):781-90.
  25. Jiang Y, Yarin AL, Pan Y. Printable highly transparent natural fiber composites. Mater. Lett. 2020;277:128290.
  26. Vanitha R, Kavitha C. Development of natural cellulose fiber and its food packaging application. Materials Today: Proceedings. 2020.
  27. Hariprasad K, Ravichandran K, Jayaseelan V, Muthuramalingam T. Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. J. Mater. Res. Technol. 2020;9(6):14029-35.
  28. Le Duigou A, Correa D, Ueda M, Matsuzaki R, Castro M. A review of 3D and 4D printing of natural fibre biocomposites. Materials & Design. 2020;194:108911.
  29. Dittenber DB, GangaRao HVS. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012;43(8):1419-29.
  30. Ding W-D, Koubaa A, Chaala A. Mechanical properties of MMA-hardened hybrid poplar wood. Industrial Crops and Products. 2013;46:304-10.
  31. Woodruff MA, Hutmacher DW. The return of 21st century. Progress in Polymer Science. 2010;35(10):1217-56.
  32. Samoladas A, Bikiaris D, Zorba T, Paraskevopoulos KM, Jannakoudakis A. Photochromic behavior of spiropyran in polystyrene and polycaprolactone thin films – Effect of UV absorber and antioxidant compound. Dyes Pigm. 2008;76(2):386-93.
  33. Karana E, Barati, B., Rognoli, V., van der Laan. Material driven design (MDD): a method to design for material experiences. International Journal of Design. 2015;9(2):35-54.
  34. Gao X, Lin L, Pang J, Chen F, Li Q. Effects of impulse-cyclone drying and silane modification on the properties of wood fiber/HDPE composite material. Carbohydrate Polymers. 2019;207:343-51.
  35. Pavliňáková V, Fohlerová Z, Pavliňák D, Khunová V, Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Materials Science and Engineering: C. 2018;91:94-102.
  36. Tiwari AP, Joshi MK, Lee J, Maharjan B, Ko SW, Park CH, et al. Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. COLLOID SURF. A-PHYSICOCHEM. ENG. ASP. 2017;520:105-13.
  37. Chaudemanche S, Perrot A, Pimbert S, Lecompte T, Faure F. Properties of an industrial extruded HDPE-WPC: The effect of the size distribution of wood flour particles. Constr Build Mater. 2018;162:543-52.
  38. Amokrane G, Falentin-Daudré C, Ramtani S, Migonney V. A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. IRBM. 2018;39(4):268-78.
  39. Unsal O, Candan Z, Korkut S. Wettability and roughness characteristics of modified wood boards using a hot-press. Ind Crops Prod. 2011;34(3):1455-7.
  40. Scărlătescu DD, Modrea A, Stanciu MD. Threepoint Bend Test to Determine the Mechanical Behavior of the Tubes Used in Water Supply Networks. Procedia Manufacturing. 2019;32:179-86.
  41. Esmaeilzadeh J, Hesaraki S, Hadavi SM-M, Ebrahimzadeh MH, Esfandeh M. Poly (d/l) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors. Mater. Sci. Eng. C. 2017;77:978-89.
  42. Fan W, Dang W, Liu T, Li J, Xue L, Yuan L, et al. Fatigue behavior of the 3D orthogonal carbon/glass fibers hybrid composite under three-point bending load. Materials & Design. 2019;183:108112.
  43. Tavares MR, Menezes LRd, Dutra Filho JC, Cabral LM, Tavares MIB. Surfacecoated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR. Polym. Test. 2017;60:39-48.
  44. Bourmaud A, Mérotte J, Siniscalco D, Le Gall M, Gager V, Le Duigou A, et al. Main criteria of sustainable natural fibre for efficient unidirectional biocomposites. Composites Part A: Applied Science and Manufacturing. 2019;124:105504.