Vol. 34 Núm. 1 (2021): Revista ION
Artículos

Hidrólisis enzimática del pasto maralfalfa (Pennisetum sp) sometido a extrusión húmeda

Ligia Johana Jaimes Cruz
Universidad Nacional de Colombia
Cristian Adoni Menjivar Dominguez
Universidad Nacional de Agricultura de Honduras
Elsy Valeska Montoya Almendarez
Universidad Nacional de Agricultura de Honduras
Esdras Omar Mendoza Orellana
Universidad Nacional de Agricultura de Honduras
Héctor Jairo Correa Cardona
Universidad Nacional de Colombia
Ángel Giraldo Mejía
Universidad Nacional de Colombia
Ángela Adriana Ruíz
Universidad Nacional de Colombia

Publicado 2021-05-26

Palabras clave

  • Bagazo,
  • Biomasa,
  • Delignificación,
  • Fibra,
  • In vitro

Cómo citar

Jaimes Cruz, L. J., Menjivar Dominguez, C. A., Montoya Almendarez, E. V., Mendoza Orellana, E. O., Correa Cardona, H. J., Mejía, Ángel G., & Ruíz, Ángela A. (2021). Hidrólisis enzimática del pasto maralfalfa (Pennisetum sp) sometido a extrusión húmeda. Revista ION, 34(1), 111–120. https://doi.org/10.18273/revion.v34n1-2021009

Resumen

Se evaluó el efecto de la extrusión del pasto maralfalfa (Pennisetum sp) sobre la composición química de la pared celular y la digestibilidad in vitro de la materia seca y de la fibra en detergente neutro. Para ello se recolectaron siete muestras (10,0 kg/muestra) del mismo lote, con 51 días de rebrote y se picaron a 2 cm. Tres de estas muestras, tomadas al azar, se procesaron frescas en un extrusor de tornillo cónico girando a 1050 rpm y con salida de 3 mm, mientras que las otras cuatro fueron extruidas en el mismo equipo con salida de 1 mm. En las muestras de pasto crudo y en las de los bagazos procedentes de la extrusión se determinó el contenido de fibra en detergente neutro, fibra en detergente ácido, lignina en
detergente ácido, digestibilidad in vitro de la materia seca y digestibilidad in vitro de la fibra en detergente neutro. Se aplicó la prueba de T de Student para analizar el efecto del tipo de tratamiento, tanto entre ellos como respecto al pasto fresco. Los resultados indican que, con relación al pasto fresco, la extrusión generó un bagazo con alto contenido de fibra en detergente neutro, incrementó la digestibilidad in vitro de la materia seca en 8,81% y la de la digestibilidad in vitro de la fibra en detergente neutro en 20,6%, pero no diferencia con el tamaño de la salida del extrusor (p<0,1). Se concluye que el proceso de extrusión como fue aplicado al pasto maralfalfa en este experimento mejora la digestibilidad de la materia seca y de la fibra en detergente neutro.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Correa HJ, Ceron JM, Arroyave H, Henao Y, López A. Pasto Maralfalfa: mitos y realidades. En: Cooperativa Colanta, IV seminario internacional Competitividad en carne y leche, 2004 nov 10-11; Medellín, Colombia. 2004. p. 231-274.

[2] Hanna WW, Gaines TP, Gonzales B, Monson WG. Effects of ploid on yield and quality of pearl millet x napiergrass hybrids. Agron J. 1984;76:669-971.

[3] Clavero T, Razz R. Valor nutritivo del pasto maralfalfa (Pennisetum purpureum x Pennisetum glaucum) en condiciones de defoliación. Revista Facultad de Agronomía (online). 2009;26(1):78-87.

[4] Kolver ES. Nutritional limitations to increased production on pasture based systems. Proceedings of the Nutrition Society, 2003;62:291-300.

[5] Natsir A. Fibre utilization by ruminants. Masagena Press, Makassar. 2012. 243 p.

[6] Ferraretto LF, Shaver RD. Making sense of starch by NDF interactions. In: Penn State Dairy Nutrition Workshop. Proceedings of the Penn State Dairy Nutrition Workshop. Grantville, PA, United States of America. 2016. p. 45-50.

[7] CONPES (Consejo Nacional de Política Económica y Social). Política Nacional Para Mejorar La Competitividad Del Sector Lácteo Colombiano. República de Colombia, Departamento Nacional de Planeación, 2010.

[8] dos Santos AC, Ximenes E, Kim Y, Ladisch M. Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology. 2019;37(5):518-531.

[9] Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances. 2011;29:675–685.

[10] Lin Z, Liu L, Li R, Shi J. Screw Extrusion Pretreatments to Enhance the Hydrolysis of Lignocellulosic Biomass. J Micr Bioch Tech. 2012;5(S12):5.

[11] Elgemark E. Intensively processed silage using Bio-extruder. Uppsala, Sweden: Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management; 2019.

[12] Sanders KJ. The effects of extrusion on ruminal digestion and performance of ruminants. Lubbock, TX, United States of America: Texas Tech University; 1998.

[13] Lichovnikovaa M, Zemanb L, Kracmarb S, Kleckera D. The effect of the extrusion process on the digestibility of feed given to laying hens. Anim Feed Sci and Tech. 2004;116:313–318.

[14] Tayyab U, Wilkinson RG, Reynolds CK, Sinclair LA. Particle size distribution of forages and mixed rations, and their relationship with ration variability and performance of UK dairy herds. Liv Sci. 2018;217:108–115.

[15] AOAC. Official method 2002.04. Amylasetreated neutral detergent fiber in feeds using refluxng in beakers or crucibles. First action 2002. Final action 2005.

[16] AOAC. official method 973.18. Fiber (acid detergent) and lignin H2SO4 in animal feed. First action 1977. Final action 1977.

[17] Van Soest PJ. Use of detergent in analysis of fibrous feeds. III. Study of effects of heating and drying on yield of fiber and Lignin Forage. J AOAC. 1965;48(4):787-790.

[18] Van Soest PJ; Wine, RH. Determination of lignin and cellulose in acid detergent fiber with permanganate. J AOAC. 1968;51(4):780-785.

[19] López HA, Roldan M. Estandarización del método de la celulasa para la determinación de la digestibilidad in vitro (trabajo de grado). Medellín, Colombia: Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias; 1991.

[20] Ross A, Willson VL. One-Sample T-Test. In: Basic and Advanced Statistical Tests. Rotterdam: Sense Publishers; 2017. p. 9-12.

[21] Feng Y, Huang Y, Ma X. The application of Student’st-test in internal quality control of clinical laboratory. Front Lab Med. 2017;1:125- 128.

[22] Heinrichs J, Kononoff P. Evaluating Particle Size of Forages and TMRs using the New Penn State Forage Particle Separator. DAS 02- 42. Pennsylvania State University, University Park, PA, United States of America; 2002.

[23] Williams A, van der Poel A, Boer H, Tamminga S. The Effect of Extrusion Conditions on the Fermentability of Wheat Straw and Corn Silage. J Sci Food Agr. Vol. 1999;74:117-124.

[24] National Research Council (NRC) 2001 Nutrient Requirements of Dairy Cattle. Seventh Revised Edition. National Academy Press, Washington, D C. 405 p.

[25] Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science. 1997;80:1463-1481.

[26] Poppi DP, Hendricksen RE, Minson DJ. The relative resistance to escape of leaf and stem particles from the rumen of cattle and sheep. J. Agric. Sci. 1985;105:9-14.

[27] Correa HJ. Calidad nutricional del pasto maralfalfa (Pennisetum sp) cosechado a dos edades de rebrote. Livestock Research for Rural Development. 2006;18(6):326-335.

[28] Delevatti LM, Cardoso AS, Barbero RP, Leite LG, Romanzini EP, Ruggieri A, Reis RA. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci Rep. 2019;9(1):7596.

[29] Hassan A, Zewdu T, Urge M, Fikru S. Effect of Nitrogen Fertilizer Application on Nutritive Value of Cenchrus ciliaris and Panicum Maximum Grown under Irrigation at Gode, Somali Region. J Nutr Food Sci. 2015;S11:S11005.

[30] Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D. Ethanol production from supercriticalfluid- extrusion cooked sorghum. Industrial Crops and Products. 2006;23(3):304-310.

[31] Heredia-Olea E, Pérez-Carrillo E, Montoya- Chiw M, Serna-Saldívar SO. Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int. 2015;2015:325905.

[32] Barakat A, Mayer C, Solhy A, Arancon RAD, De Vries H, Luque R. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv. 2014;4:48109-48127.

[33] Duque A, Manzanares P, Ballesteros M. Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renew Energy. 2017;114:1427–1441.

[34] Sanders KJ. The effects of extrusion on ruminal digestion and performance of ruminants. Lubbock, Texas, United States of America: Texas Tech University; 1998.

[35] Kononoff PJ, Heinrichs AJ, Lehman HA. The Effect of Corn Silage Particle Size on Eating Behavior, Chewing Activities, and Rumen Fermentation in Lactating Dairy Cows. Journal of Dairy Science. 2003;86(10):3343–3353.

[36] Khullar E, Dien BS, Rausch KD, Tumbleson ME, Singh V. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial Crops and Products. 2013;44,11–17.

[37] Bellet N, Besle J and Demarquilly C 1998 Ammonia treatment of lucerne and cocksfoot harvested at two growth stages: Effect on cell wall composition and digestibility, Champanelle, Francia. 19 p.

[38] Gosselink JMJ, Dulphy JP, Poncet C, Jailler M, Tamminga S, Cone JW. Prediction of forage digestibility in ruminants using in situ and in vitro techniques. Animal Feed Science and Technology. 2004;115(3-4):227-246