Fabricación de membranas sensibles al cambio de pH para posibles usos en tratamiento de heridas cutáneas
Publicado 2022-12-02
Palabras clave
- Biomateriales,
- Membranas,
- Antocianinas,
- Quitosano,
- Colágeno
- Fibroína,
- Polivinil alcohol (PVA) ...Más
Cómo citar
Derechos de autor 2022 Lucia Uribe Herrera, Diana Marcela Escobar Sierra, Manuela Cardona Franco, Laura Arango Arroyave
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
Este estudio tuvo como objetivo la obtención de antocianinas a partir del repollo morado (brassica oleracea) para utilizarlas como agentes indicadores de pH en membranas fabricadas a partir de cuatro biopolímeros diferentes para su posible uso en aplicaciones biomédicas. Se evaluaron parámetros de eficiencia y respuesta al pH con el fin de optimizar el proceso de extracción de las antocianinas, en el caso de las membranas se realizaron además pruebas de hinchamiento y degradación con el objetivo de realizar una comparación entre ellas. Todo el proceso estuvo sustentado mediante espectros y absorbancias medidas por espectrometría, y pruebas de comportamiento. Los resultados muestran que las membranas preparadas presentan buenas propiedades indicadoras en el rango de pH alcanzado por la piel, adecuados porcentajes de hinchamiento y tiempos de degradación que superan las 96 horas, lo que las hace útiles para un posible uso en el tratamiento de heridas cutáneas.
Descargas
Referencias
- Brüel A, Christensen EI, Tranum-Jensen J, Qvortrup K, Geneser F. Geneser histología. 4 ed. Editorial Médica Panamericana [Internet]. 2015. https://edimeinter.com/catalogo/novedad/geneser-histologia-edicion-4a-2015/
- Cabrel C, Univeros G, Aguilar JL. Influencia del pH en la liberación del factor de crecimiento derivado de plaquetas (PDGF-BB) a partir de un hidrogel a base de β-Quitosano. Rev. Soc. Quím. Perú. 2019;85(4):440-451. dx.doi.org/10.37761/rsqp.v85i4.258
- Valencia LE, Martel SA, Vargas CL, Rodríguez CA, Olivas I. Apósitos de polímeros naturales para regeneración de piel. Rev. mex. ing. Bioméd. 2016;37(3):235-249. doi.org/10.17488/rmib.37.3.4
- Garzón GA. Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta biol.Colomb. 2008;13(3):27-36. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2008000300002
- Aguilera-Ortiz M, Reza-Vargas M, Chew-Madinaveita RG, Meza-Velázquez JA. Propiedades funcionales de las antocianinas. Biotec., 2011;13(2):16-22. doi.org/10.18633/bt.v13i2.81
- Teixeira LN, Stringheta PC, de Oliveira FA. Comparação de métodos para quantificação de antocianinas. Ceres, 2008;55(4):297-304. http://www.redalyc.org/articulo.oa?id=305226703009
- Uribe L, Cardona M, Arango L. Extracción de antocianinas desde diferentes fuentes naturales y evaluación de su efecto antimicrobiano. Informe técnico, Proyecto Investigativo Semestral (PIS), Universidad de Antioquia. 2018. Reporte interno.
- Maiolo S, González J, Hoppe C, Álvarez V. Geles compuestos basados en poli (vinil alcohol) para su uso en biomedicina. En: 11° Congreso Binacional de Metalurgia y Materiales SAM/CONAMET; 2011 oct 18-21; Rosario, Argentina. 2011. https://www.academia.edu/download/7187929/38-22-2-sp.pdf
- Azevedo VVC, Chaves SA, Bezerra DC, Lia Fook MV, Costa ACFM. Quitina e Quitosana: aplicações como biomateriais. Revista Eletrônica de Materiais e Processos 2007;2(3):27-34.
- Gaviria Arias DG, Caballero Méndez LC. Uso de biomateriales a partir de la fibroína de gusano de seda (Bombyx mori L.) para procesos de medicina regenerativa basada en ingeniería de tejidos. Rev. Méd. Risaralda. 2015;21(1):38 47. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-06672015000100008
- Meler-García L. Preparación y caracterización de hidrogeles de Fibroína para aplicaciones biomédicas (tesis de grado). Madrid, España: Facultad de Ingeniería. Universidad Politécnica de Madrid; 2015. https://oa.upm.es/53272/
- Escobar-Sierra DM, Perea-Mesa YP. Manufacturing and evaluation of Chitosan, PVA and Aloe Vera hydrogels for skin applications. DYNA. 2017;84(203):134-142. dx.doi.org/10.15446/dyna.v84n203.62742
- Sánchez-Cruz LY, Martínez-Villarreal AA, Lozano-Platonoff A, Cárdenas-Sánchez A, Contreras-Ruiz J. Epidemiología de las úlceras cutáneas en Latinoamérica. Med Cutan Iber Lat Am. 2016;44(3):183-197. https://www. researchgate.net/publication/315113679_Epidemiology_of_cutaneous_ulcers_in_Latin_America
- Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27(15):2907 2915. doi.org/10.1016/j.biomaterials.2006.01.017
- Faraldos M, Goberna C. Técnicas de análisis y caracterización de materiales. 3 ed. España: Editorial CSIC Consejo Superior de Investigaciones Científicas; 2021. https://icp.csic.es/es/tecnicas-de-analisis-ycaracterizacion-de-materiales-3a-ed/
- Wang M, Li J, Li W, Du Z, Qin S. Preparation and characterization of novel poly (vinyl alcohol)/collagen double network hydrogels. Int J Biol Macromol. 2018,118(Pt A):41-48. doi.org/10.1016/j.ijbiomac.2018.05.200
- Arredondo A, Patiño JF, Londoño ME, Echeverri CE. Matriz a partir de un hidrogel de alcohol polivinílico (PVA) combinada con sulfadiazina de plata con potencial aplicación en el manejo y control de la sepsis en heridas dérmicas. Rev. Iberoam. Polim. 2011;12(4):178-187.
- Hoare TR. Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49(88):1993–2007. doi.org/10.1016/j.polymer.2008.01.027
- García MF. Materiales poliméricos funcionalizados: Síntesis, modificación y estudios de propiedades (tesis doctoral). Córdoba, Argentina: Facultad de Ciencias Químicas, Universidad Nacional de Córdoba; 2015. http://hdl.handle.net/11086/15483