Vol. 35 Núm. 1 (2022): Revista ION
Artículos

Optimización del proceso de extracción de fibroína a partir del capullo de gusano de seda Bombyx Mori

Carlos Augusto Murillo Usuga
Universidad de Antioquia
Diana Marcela Escobar Sierra
Universidad de Antioquia

Publicado 2022-06-03

Palabras clave

  • Fibroína,
  • Desgomado,
  • Optimización

Cómo citar

Murillo Usuga, C. A., & Escobar Sierra, D. M. (2022). Optimización del proceso de extracción de fibroína a partir del capullo de gusano de seda Bombyx Mori. Revista ION, 35(1), 33–42. https://doi.org/10.18273/revion.v35n1-2022003

Resumen

En el presente trabajo se realizó un estudio estadístico para optimizar el rendimiento del proceso de extracción de fibroína del capullo del gusano de seda Bombyx Mori, también conocido como desgomado, en el cual la fibroína y la sericina, componentes que conforman la estructura del capullo, son separadas utilizando soluciones acuosas de carbonato de sodio (Na2CO3); el estudio en cuestión se hizo mediante un diseño experimental 23 con dos puntos centrales, para ello, los factores seleccionados fueron la temperatura, la relación Na2CO3/Capullos y el tiempo de extracción. La significativa estadística de estos factores fue estudiada mediante análisis de varianza (ANOVA). De acuerdo con los resultados, el proceso de extracción depende principalmente del tiempo de extracción (p = 0,009) y la temperatura de trabajo (p = 0,0112), obteniéndose bajo las condiciones óptimas de extracción un promedio de 74,76% de fibroína del capullo. Finalmente, la muestra obtenida bajo las mejores condiciones se caracterizó por medio de análisis Infrarrojo por Transformada de Fourier (FTIR) y por análisis termogravimétrico (TGA) con el fin de tener la base del material obtenido para posibles aplicaciones biomédicas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Khan MMR, Tsukada M. Electrospun silk sericin nanofibers for biomedical applications. Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing. 2014; 125-156. doi: 10.1533/9780857097064.1.125.
  2. Dumitriu S. Polymers as Biomaterials 1. 2002. doi:10.15713/ins.mmj.3.
  3. Enis IY, Sezgin H, Sadikoglu TG. Full factorial experimental design for mechanical properties of electrospun vascular grafts. Journal of Industrial Textiles. 2018;47(6):1378-1391. doi:10.1177/1528083717690614.
  4. Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Han MY (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science. 2015;46: 86-110.
  5. Zhang J, Huang H, Ju R, Chen K, Li S, Wang W, Yan Y. In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. The American Journal of Surgery. 2017;213(1): 87-93.
  6. Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc. Res. Tech. 2017;80(3):280–290.
  7. Wang Q, Tu F, Liu Y, Zhang Y, Li H, Kang Z, et al. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity. Mater Sci Eng C. 2017;75:237–46.
  8. Sagnella A, Pistone A, Bonetti S, Donnadio A, Saracino E, Nocchetti M, et al. Effect of different fabrication methods on the chemophysical properties of silk fibroin films and on their interaction with neural cells. RSC Adv. 2016;6(11):9304-14.
  9. Du X, Wang Y, Yuan L, Weng Y, Chen G, Hu Z. Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films. Colloids Surf B Biointerfaces. 2014;122:79-84.
  10. Du J, Zhu T, Yu H, Zhu J, Sun C, Wang J, et al. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl Surf Sci. 2018;447:269-78.
  11. Li Z-H, Ji S-C, Wang Y-Z, Shen X-C, Liang H. Silk fibroin-based scaffolds for tissue engineering. Front Mater Sci. 2013;7(3):237- 47.
  12. Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silk e heparin biomaterials for vascular tissue engineering applications. Biomaterials. 2014;35:83-91.
  13. Sun N, Lei R, Xu J, Kundu SC, Cai Y, Yao J, et al. Fabricated porous silk fibroin particles for pH-responsive drug delivery and targeting of tumor cells. J Mater Sci. 2019;54(4):3319-30.
  14. Chen J, Venkatesan H, Hu J. Chemically modified silk proteins. Adv Eng Mater. 2018;20(7):1700961. 42 rev. ion. 2022;35(1):33-42. Bucaramanga (Colombia).
  15. Adalı T, Uncu M. Silk fibroin as a nonthrombogenic biomaterial. Int J Biol Macromol. 2016;90:11-9.
  16. Mi H-Y, Jiang Y, Jing X, Enriquez E, Li H, Li Q, et al. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater Sci Eng C. 2019;98:241-9.
  17. Zhou J, Zhang B, Shi L, Zhong J, Zhu J, Yan J, et al. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS Appl Mater Interfaces. 2014;6(24):21813–21.
  18. Lu Q, Hu X, Wang X, Kluge JA, Lu S, Cebe P, et al. Water-insoluble silk films with silk I structure. Acta Biomater. 2010;6(4):1380–7.
  19. Kamalha E, Zheng Y, Zeng Y. Analysis of the secondary crystalline structure of regenerated Bombyx mori fibroin. Res Rev Biosci. 2013;7:76–83.
  20. Nakazawa Y, Sato M, Takahashi R, Aytemiz D, Takabayashi C, Tamura T, et al. Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. J Biomater Sci Polym Ed. 2011;22(1–3):195–206.
  21. DeBari MK, Abbott RD. Microscopic considerations for optimizing silk biomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(2):e1534.
  22. Sah MK, Kumar A, K P. The extraction of fibroin protein from Bombyx Mori silk cocoon: Optimization of process parameters. Int j bioinform res. 2010;2(2):33–41.
  23. Yun H, Oh H, Kim MK, Kwak HW, Lee JY, Um IC, et al. Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. Int J Biol Macromol. 2013;52:59–65.
  24. Allardyce BJ, Rajkhowa R, Dilley RJ, Redmond SL, Marcus D. Atlas, Wang X. Glycerolplasticised silk membranes made using formic acid are ductile, transparent and degradationresistant. Mater Sci Eng C. 2017;80:165–73.
  25. Song JE, Sim BR, Jeon YS, Kim HS, Shin EY, Carlomagno C, et al. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. J Biomater Sci Polym Ed. 2019;30(4):263–75.
  26. Subia B, Chandra S, Talukdar S, Kundu SC. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol (Camb). 2014;6(2):203–14.
  27. Zhao Z, Li Y, Xie M-B. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci. 2015;16(3):4880–903.
  28. Seib FP, Herklotz M, Burke KA, Maitz MF, Werner C, Kaplan DL. Multifunctional silkheparin biomaterials for vascular tissue engineering applications. Biomaterials. 2014;35(1):83–91.
  29. Kara F, Aksoy EA, Calamak S, Hasirci N, Aksoy S. Immobilization of heparin on chitosangrafted polyurethane films to enhance antiadhesive and antibacterial properties. J Bioact Compat Polym. 2016;31(1):72–90.
  30. Kuehl R. Diseño de experimentos. Principios estadísticos de diseño y análisis de investigación. 2 ed. Thomson Learning; 2000.
  31. Leivisk K. Introduction to Experiment Design. University of Oulu; 2013.
  32. Takasu Y, Yamada H. Tsubouchi K. Isolation of Three Main Sericin Components from the Cocoon of the Silkworm, Bombyx mori. Biosci Biotechnol Biochem. 2002;66(12):2715–18.
  33. Murphy A, Kaplan D. Biomedical applications of chemically-modified silk fibroin. J. Mater Chem. 2009;19(36):6443–50.
  34. Yeo I-S, Oh J-E, Jeong L, Lee TS, Lee SJ, Park WH, et al. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules. 2008;9(4):1106–16.
  35. Jin H-J, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature. 2003;424(6952):1057–61.
  36. Bandekar J, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins: Characteristic amide bands of beta-turns. Proc Natl Acad Sci U S A. 1979;76(2):774–7.
  37. Boulet-Audet M, Vollrath F, Holland C. Identification and classification of silks using infrared spectroscopy. J Exp Biol. 2015;218(Pt 19):3138–49.
  38. Kweon HY, Um IC, Park YH. Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer (Guildf). 2000;41(20):7361–67.
  39. Antonella M, Luca F, Claudio M. Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol Chem Phys. 2002;203(10-11):1658–1665.